Читать «Медицинская физика» онлайн - страница 4
Вера Александровна Подколзина
2) дисперсией случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.
Для непрерывной случайной величины математическое ожидание и дисперсия записываются в виде:
где f(x) – плотность вероятности или функция распределения вероятностей. Она показывает, как изменяется вероятность отнесения к интервалу dx случайной величины в зависимости от значения самой этой величины. Нормальный закон распределения. В теориях вероятностей и математической статистики, в различных приложениях важную роль играет нормальный закон распределения (закон Гаусса). Случайная величина распределена по этому закону, если плотность ее вероятности имеет вид:
где а = М(х) – математическое ожидание случайной величины;
σ – среднее квадратное отклонение; следовательно;
σ2– дисперсия случайной величины. Кривая нормального закона распределения имеет колоколообразную форму, симметричную относительно прямой х = а (центр рассеивания).
5. Распределение Максвелла (распределение газовых молекул по скоростям) и Больцмана
Распределение Максвелла – в равновесном состоянии параметры газа (давление, объем и температура) остаются неизменными, однако микросостояния – взаимное расположение молекул, их скорости – непрерывно изменяются. Из-за огромного количества молекул практически нельзя определить значения их скоростей в какой-либо момент, но возможно, считая скорость молекул непрерывной случайной величиной, указать распределение молекул по скоростям. Распределение молекул по скоростям подтверждено различными опытами. Распределение Максвелла можно рассматривать как распределение молекул не только по скоростям, но и по кинетическим энергиям (так как эти понятия взаимосвязаны).
Выделим отдельную молекулу. Хаотичность движения позволяет например для проекции скорости Vx молекулы принять нормальный закон распределения. В этом случае, как показал Дж. К. Максвелл, плотность вероятности того, что молекула имеет компоненту скорости Ux, записывается следующим образом:
Можно получить максвелловскую функцию распределения вероятностей абсолютных значений скорости (распределение Максвелла по скоростям):
Распределение Больцмана. Если молекулы находятся в каком-либо внешнем силовом поле (например, в гравитационном поле Земли), то можно найти распределение по их потенциальным энергиям, т. е. установить концентрацию частиц, обладающих некоторым определенным значением потенциальной энергии. Распределение частиц по потенциальным энергиям в силовых полях – гравитационном, электрическом и др. – называют распределением Боль-цмана.
Применительно к гравитационному полю это распределение может быть записано в виде зависимости концентрации n молекул от высоты h над уровнем земли, или потенциальной энергии mgh:
Такое распределение молекул в поле тяготения Земли можно качественно, в рамках молекулярно-кине-тических представлений, объяснить тем, что на молекулы оказывают влияние два противоположных фактора: гравитационное поле, под действием которого все молекулы притягиваются к Земле, и молеку-лярно-хаотическое движение, стремящееся равномерно разбросать молекулы по всему возможному объекту.