Читать «Теплотехника» онлайн - страница 14

Наталья Бурханова

Если параметры системы не изменяется со временем, то можно говорить о термодинамическом равновесии системы.

Совокупность тел и полей, которые могут обмениваться энергией не только между собой, но и с внешней средой, называют термодинамической системой. Если в термодинамической системе происходит изменение внутренней энергии, то можно говорить о совершении этой системой работы и о теплообмене между частями системы.

Термодинамически параметры состояния

Давление, температура, плотность, концентрация, объем системы – термодинамические параметры состояния.

Процесс, при котором отсутствует теплообмен между системой и внешней средой, называется адиабатическим. Первый закон термодинамики при dQ = 0 выглядит следующим образом:

CvdT + PdV= 0,

а при учете dT= (PdV + VdP) / Rполучим следующую форму записи:

dP/ P= -gdV/ V,

где g– показатель адиабаты;

Р – давление;

V– объем.

Это уравнение имеет решение в виде:

PV g= const.

Оно называется уравнением Пуассона. С учетом уравнения Менделеева-Клайперона уравнение Пуассона будет выглядеть как:

Tv g-1 = const,

T gp1-g = const.

Уравнения Пуассона описывают квазистатические адиабатические процессы. Адиабатическое сжатие приводит к тому, что газ нагревается, в случае адиабатического расширения он охлаждается.

В отличие от изотермического процесса для адиабатического процесса характерно более быстрое уменьшение давления с увеличением объема. Работа, которую совершает газ при адиабатическом процессе, всегда меньше работы, совершаемой при изотермическом процессе, если считать изменение объема одинаковым для обоих случаев. При адиабатическом процессе существует зависимость работы от показателя адиабаты. Устремив g → 1, получим значение работы при изотермическом процессе, т. е. произойдет переход адиабаты (Q = const) в изотерму (T= const).

19. Политропический процесс

Процесс называется политропическим, если считать, что теплоемкость остается постоянной. Первый закон термодинамики при С = const выглядит следующим образом:

(CCv)dT = PdV,

а при учете dT= (PdV + VdP)/ R получим следующую форму записи:

ndV/ V= -dP/ P,

n= (CCP)/ (CCV),

Уравнение имеет решение в виде:

PVn= const,

где P– давление газа;

V– объем газа.

Для политропического процесса характерно наличие частичного теплообмена системы с внешней средой. Кривая политропического процесса расположена на PV-диаграмме между изотермой (Г = const) и адиабатой (Q= const) и называется политропой. С учетом уравнения Менделеева-Клайперона уравнение политропы будет выглядеть следующим образом:

TV n-1 = const,

T nPn-1= const.

Определим работу, которую совершает газ при политропическом процессе:

А12 = (m / M)R(T1 – T2) / (n – 1),

где m– масса газа;

M– молярная масса газа;

R– универсальная газовая постоянная;

n– показатель политропы;

T1 и T2– начальная и конечная температуры.

Случай Т2 > T1 и А12 < 0 соответствует сжатию газа, т. е. работа совершается над ним. Показатель политропы можно получить из опыта. В отдельных случаях политропический процесс может переходить в следующие термодинамические процессы.