Читать «Теория статистики» онлайн - страница 44
Инесса Викторовна Бурханова
Множественный коэффициент корреляции, характеризует степень линейной зависимости между величиной х1 и остальными переменными (х2, хз), входящими в модель, изменяется в пределах от 0 до 1.
Ординальная (порядковая) переменная помогает упорядочивать статистически исследованные объекты по степени проявления в них анализируемого свойства
Ранговая корреляция – статистическая связь между порядковыми переменными (измерение статистической связи между двумя или несколькими ранжировками одного и того же конечного множества объектов О1,О2,…, Оп.
Ранжировка – это расположение объектов в порядке убывания степени проявления в них k-го изучаемого свойства. В этом случае x(k) называют рангом i-го объекта по k-му признаку. Раж характеризует порядковое место, которое занимает объект Оi, в ряду п объектов.
К. Спирмен в 1904г предложил показатель, который служил для измерения степени тесноты связи между ранжировками
В последствии данный коэффициент был назван ранговым коэффициентом К. Спирмен:
56. Методы регрессионного анализа
Термин «регрессия» ввел английский психолог и антрополог Ф.Гальтон.
Для точного описания уравнения регрессии необходимо знать чакон распределения результативного показателя у. В статистической практике обычно приходится ограничиваться поиском подходящих аппроксимаций для неизвестной истинной функции регрессии ffc), так как исследователь не располагает точным знанием условного закона распределения вероятностей анализируемого результатирующего показателя у при заданных значениях аргумента х.
Рассмотрим взаимоотношение между истинной f (х) = = М(у/х), модельной регрессией у и оценкой у регрессии. Пусть результативный показатель у связан с аргументом х соотношением:
где
Причем M
Для наилучшего восстановления по исходным статистическим данным условного значения результативного показателя f(x) и неизвестной функции регрессии /(х) = М(у/х) наиболее часто используют следующие критерии адекватности (функции потерь).
Согласно методу наименьших квадратов минимизируется квадрат отклонения наблюдаемых значений результативного показателя
Σ(yi– f(хi)2 → min
Получаемая регрессия называется среднеквадратической.
Согласно методу наименьших модулей, минимизируется сумма абсолютных отклонений наблюдаемых значений результативного показателя от модульных значений:
yi = f(xi)
И получаем среднеабсолютную медианную регрессию:
Регрессионный анализ – это метод статистического анализа зависимости случайной величины