Читать «Гидравлика» онлайн - страница 2
М. А. Бабаев
Характеризуется коэффициентом объемного сжатия.
Из формулы видно, что речь идет о способности жидкостей уменьшать объем при единичном изменении давления: из-за уменьшения присутствует знак минус.
Температурное расширение.
Суть явления втом, что слой с меньшей скоростью «тормозит» соседний. В итоге появляется особое состояние жидкости, из-за межмолекулярных связей у соседних слоев. Такое состояние называют вязкостью.
Отношение динамической вязкости к плотности жидкости называется кинематической вязкостью.
Поверхностное натяжение: из-за этого свойства жидкость стремится занимать наименьший объем, например, капли в шарообразных формах.
В заключение приведем краткий список свойств жидкостей, которые рассмотрены выше.
1. Текучесть.
2. Сжимаемость.
3. Плотность.
4. Объемное сжатие.
5. Вязкость.
6. Температурное расширение.
7. Сопротивление растяжению.
8. Свойство растворять газы.
9. Поверхностное натяжение.
3. Силы, действующие в жидкости
Жидкости делятся на покоящиеся и движущиеся.
Здесь же рассмотрим силы, которые действуют на жидкость и вне ее в общем случае.
Сами эти силы можно разделить на две группы.
1. Силы массовые. По-другому эти силы называют силами, распределенными по массе: на каждую частицу с массой Δ
Пусть объем Δ
где
Плотность массовой силы – векторная величина, отнесена к единичному объему Δ
Примерами этих сил можно назвать силы тяжести, инерции (кориолисова и переносная силы инерции), электромагнитные силы.
Однако в гидравлике, кроме особых случаев, электромагнитные силы не рассматривают.
2. Поверхностные силы. Таковыми называют силы, которые действуют на элементарную поверхность Δ
Таковыми считают силы: силы давления которые составляют нормаль к поверхности; силы трения которые являются касательными к поверхности.
Если по аналогии (1) определить плотность этих сил, то:
нормальное напряжение в точке
касательное напряжение в точке
И массовые, и поверхностные силы могут быть внешними, которые действуют извне и приложены к какой-то частице или каждому элементу жидкости; внутренними, которые являются парными и их сумма равна нулю.
4. Гидростатическое давление и его свойства
Общие дифференциальные уравнения равновесия жидкости – уравнения Л. Эйлера для гидростатики.
Если взять цилиндр с жидкостью (покоящейся) и провести через него линию раздела, то получим жидкость в цилиндре из двух частей. Если теперь приложить некоторое усилие к одной части, то оно будет передаваться другой через разделяющую плоскость сечения цилиндра: обозначим эту плоскость
Если саму силу обозначить как то взаимодействие, передаваемое от одной части к другой через сечение Δ