Читать «Журнал «Вокруг Света» №6 за 2002 год» онлайн - страница 46

Вокруг Света

Его детектор – огромный резервуар (40х40 м) из нержавеющей стали, заполненный 50 000 т необычайно чистой воды, которая служит мишенью для нейтрино. На поверхности резервуара размещены 11 146 фотоумножителей (ФЭУ), регистрирующие появляющиеся импульсы голубого цвета, известные как Черенковское излучение, которые сообщают о столкновении нейтрино с молекулой воды (использует ту же методику обнаружения нейтрино, что и Kamiokande-II).

Внутренний детектор, используемый для физических исследований, окружен слоем обычной воды, который называется внешним детектором и также контролируется фотоумножителями, чтобы не допустить в основной детектор каких-либо нейтрино, произведенных в окружающей детектор породе.

В дополнение к световым коллекторам и воде огромное количество электроники, компьютеров, калибровочных устройств и оборудования для очистки воды установлено в детекторе или вблизи него.

Эксперимент SNO

Садбурская нейтринная обсерватория – это совместный эксперимент группы ученых из Канады, США и Англии. Вся лаборатория и детектор расположены под землей на глубине 2 км в шахте около Садбури, Канада.

Строительство лаборатории начали в 1990 году и завершили в 1998-м.

В мае 1999-го была выполнена калибровка оборудования SNO, которая помогла оценить оптические параметры, пространственную, угловую и энергетическую чувствительность детектора, чувствительность к сигналам от нейтрино и процессам, которые производят фон и систематические эффекты, способные повлиять на интерпретацию результатов, и только после этого начались наблюдения.

SNO-детектор представляет собой гигантский резервуар диаметром 22 и высотой 34 метра, с очень чистой обычной водой, в которую помещен бак из акрилового пластика, имеющий диаметр 12 метров, с 1000 тонн тяжелой воды, служащей мишенью для нейтрино.

Акриловый резервуар окружает геодезическая сфера 17-метрового диаметра, содержащая 9 456 фотоумножителей для обнаружения небольших вспышек света, излучаемых в момент попадания нейтрино на мишень.

Лаборатория включает электронику и компьютерные ресурсы, систему управления и системы очистки как для тяжелой, так и обычной воды.

AMANDA

Работа над проектом была начата в 1991 году с изучения оптических свойств льда на глубинах от 800 до 1000 м (AMANDA A). Но на этих глубинах из-за рассеяния света пузырьками воздуха, заключенными во льду, наблюдения оказались практически невозможны. С начала 1996 года, после пересмотра проекта, модули стали размещать на глубинах от 1 500 до 2 000 м (AMANDA B), где оптические свойства льда оказались очень высокими.

Для создания детекторной матрицы из фотоумножителей во льду были просверлены отверстия диаметром 50 см, причем использовавшиеся сверла с горячей водой создали отверстия глубиной 2 км, не замерзавшие в течение двух дней. Этого времени хватило, чтобы погрузить в них струны с прикрепленными оптическими модулями.

Каждый модуль работает независимо и содержит 30-сантиметровый фотоумножитель, который помещен внутрь прозрачной стеклянной сферы для защиты от высокого давления на большой глубине, и электрический кабель, выходящий на поверхность. Вся управляющая и регистрирующая аппаратура устанавливается на поверхности. Такая система обеспечивает высокую надежность и делает возможной постепенную модернизацию детектора.