Читать «Большая Советская Энциклопедия (СФ)» онлайн - страница 13

БСЭ БСЭ

  Лит. см. при ст. .

Рис. к ст. Сферическая тригонометрия.

Сферические координаты

Сфери'ческие координа'ты точки М, три числа r, q, j, которые определяются следующим образом. Через фиксированную точку О (рис.) проводятся три взаимно оси Ox, Оу, Oz. Число r равно расстоянию от точки О до точки М, q представляет собой угол между вектором  и положительным направлением оси Oz, j — угол, на который надо повернуть против часовой стрелки положительную полуось Ox до совпадения с вектором  (N — проекция точки М на плоскость хОу). С. к. точки М зависят, таким образом, от выбора точки О и трёх осей Ox, Оу, Oz. Связь С. к. с прямоугольными декартовыми устанавливается следующими формулами:

, , .

С. к. имеют большое применение в математике и её приложениях к физике и технике.

Рис. к ст. Сферические координаты.

Сферические функции

Сфери'ческие фу'нкции, специальные функции, применяемые для изучения физических явлений в пространственных областях, ограниченных сферическими поверхностями, и для решения физических задач, обладающих сферической симметрией. С. ф. являются решениями дифференциального уравнения

,

получающегося при разделении переменных в в сферических координатах r, q, j. Общий вид решения:

,

где am — постоянные,  — присоединённые функции Лежандра степени l и порядка m, определяемые равенством:

,

где Рп — .

  С. ф. можно рассматривать как функции на поверхности единичной сферы. Функции

образуют полную ортонормированную систему на сфере, играющую ту же роль в разложении функций на сфере, что тригонометрическая система функций {e imj} на окружности. Функции на сфере, не зависящие от координаты j, разлагаются по зональным С. ф.:

С. ф. степени l

при вращении сферы линейно преобразуется по формуле:

  (1)

(q–1M точка, в которую переходит точка М сферы при вращении q–1). Коэффициенты  являются матричными элементами неприводимого унитарного представления веса l группы вращения сферы. Их называют также обобщёнными С. ф. Обобщённые С. ф. применяются при разложении векторных и тензорных полей на единичной сфере, решении некоторых задач теории упругости и т. д.

  С формулой (1) связана теорема сложения для зональных С. ф.:

,

где cos g = cos q cos q‘ + sinq sinq' cos (j —j’), g — сферическое расстояние точки (q, j) от точки (q', j’).

  Характерным примером многочисленных приложений С. ф. к вопросам математической физики и механики является применение их в теории потенциала. Пусть  — поверхностная плотность распределения массы по сфере радиуса R с центром в начале координат; если а можно разложить в ряд С. ф. , сходящийся равномерно на поверхности сферы, то потенциал, соответствующий этому распределению масс, в каждой точке (r, q, j), внешней относительно данной сферы, равен