Читать «Большая Советская Энциклопедия (ОД)» онлайн - страница 55

БСЭ БСЭ

a0(x) y (n) + a1(x) y (n-1) + ... + an (x) y = 0,

  называемое линейным однородным дифференциальным уравнением, однородно по отношению к у, у',..., y (n-1), y (n). Уравнение у' = f (х, у), где f (x, y) = f (lx, lу) при любом l  [f (x, y) — однородная функция со степенью однородности 0], называется дифференциальным уравнением, однородным по отношению к переменным x и у. Пример: .

Однородные координаты

Одноро'дные координа'ты точки, прямой и т.д., координаты, обладающие тем свойством, что определяемый ими объект не меняется, когда все координаты умножаются на одно и то же число. Например, О. к. точки М на плоскости могут служить три числа: X, Y, Z, связанные соотношением X : Y : Z = х : у : 1, где х и у — декартовы координаты точки М. Введение О. к. позволяет добавить к точкам евклидовой плоскости точки с третьей О. к., равной нулю (т. н. бесконечно удалённые точки), что важно для . См. также .

Односвязная область

Односвя'зная о'бласть, плоская , обладающая тем свойством, что для любой замкнутой непрерывной кривой, принадлежащей области, часть плоскости, ограниченная этой кривой, принадлежит области. Например, внутренность круга, квадрата, треугольника — О. о. Внутренность кругового кольца не является О. о. — это двусвязная область (см. ).

Односемядольные

Односемядо'льные, односемянодольные, класс покрытосеменных растений; то же, что .

Одностороннее движение

Односторо'ннее движе'ние, метод регулирования дорожного движения путём использования всей ширины проезжей части улицы или дороги для движения транспортных средств только в одном направлении. Иногда при организации О. д. сохраняют встречное движение маршрутных автобусов или троллейбусов; в некоторых случаях режим О. д. вводят на определённые промежутки времени. При введении О. д. пропускная способность проезжей части и скорость движения возрастают в среднем на 10—12%, а количество дорожно-транспортных происшествий существенно уменьшается.

  Улицы с О. д. существовали ещё в древней Помпее. В 1906 О. д. было введено на улицах г. Филадельфия (США). О. д. широко распространено во многих городах мира; в частности, в Париже примерно на 30% улиц организовано О. д. В ряде городов СССР (Москва, Ленинград, Рига, Вильнюс, Баку, Куйбышев, Горький и др.) на улицах также принято О. д.

  Лит.: Страментов А. Е., Фишельсон М. С., Городское движение, 2 изд., М., 1965; Поляков А. А., Организация движения на улицах и дорогах, М., 1965; Метсон Т. М., Смит У. С., Хард Ф., Организация движения, пер. с англ., М., 1960.

  М. Б. Афанасьев.

Односторонние поверхности

Односторо'нние пове'рхности, поверхности, не имеющие (в отличие, например, от сферы или квадрата) двух различных сторон. Точнее, предполагая, что поверхность имеет непрерывно зависящую от точки нормаль, можно, взяв в какой-либо точке поверхности нормальный вектор и непрерывно ведя его вдоль замкнутого пути, прийти в исходную точку с вектором, противоположным начальному. Простейшая О. п. — т. н. . Класс О. п. в трёхмерном пространстве совпадает с классом неориентируемых поверхностей. См. .