Читать «Большая Советская Энциклопедия (ОБ)» онлайн - страница 57
БСЭ БСЭ
Животные и др. гетеротрофы получают углеводы в готовом виде с пищей, преимущественно в виде и (сахароза, крахмал). В пищеварительном тракте углеводы под действием ферментов расщепляются на моносахариды, которые всасываются в кровь и разносятся ею по всем тканям организма. В тканях из моносахаридов синтезируется запасной полисахарид животных — . См. .
Биосинтез липидов. Первичные продукты фотосинтеза, хемосинтеза и образовавшиеся из них или поглощённые с пищей углеводы являются исходным материалом для синтеза — жиров и др. жироподобных веществ. Так, например, накопление жиров в созревающих семенах масличных растений происходит за счёт сахаров. Некоторые микроорганизмы (например, Torulopsis lipofera) при культивировании на растворах глюкозы за 5 часов образуют до 11% жира на сухое вещество. Глицерин, необходимый для синтеза жиров, образуется путём восстановления фосфоглицеринового альдегида. Высокомолекулярные жирные кислоты — пальмитиновая, стеариновая, олеиновая и др., дающие при взаимодействии с глицерином , синтезируются в организме из уксусной кислоты — продукта фотосинтеза или окисления веществ, образовавшихся в результате распада углеводов. Животные получают жиры также с пищей. При этом жиры в пищеварительном тракте расщепляются липазами на глицерин и жирные кислоты и усваиваются организмом. См. .
Биосинтез белков. У автотрофных организмов синтез белков начинается с усвоения неорганического азота (N) и синтеза . Некоторые микроорганизмы в процессе усваивают из воздуха молекулярный азот, который при этом превращается в аммиак (NH3). Высшие растения и хемосинтезирующие микроорганизмы потребляют азот в виде аммонийных солей и нитратов, причём последние предварительно подвергаются ферментативному восстановлению до NH3. Под действием соответствующих ферментов NH3 затем соединяется с кето- или оксикислотами, в результате чего образуются аминокислоты (например, пировиноградная кислота и NH3 дают одну из наиболее важных аминокислот — ). Образовавшиеся т. о. аминокислоты могут далее подвергаться и др. превращениям, давая все др. аминокислоты, входящие в состав белков.
Гетеротрофные организмы также способны синтезировать аминокислоты из аммиачных солей и углеводов, однако животные и человек получают основную массу аминокислот с белками пищи. Ряд аминокислот гетеротрофные организмы синтезировать не могут и должны получать их в готовом виде в составе пищевых белков.
Аминокислоты, соединяясь друг с другом под действием соответствующих ферментов, образуют различные белки (см. , раздел Биосинтез белков). Белками являются все ферменты. Некоторые структурные и сократительные белки также обладают каталитической активностью. Так, мышечный белок способен гидролизовать аденозинтрифосфат (АТФ), поставляющий энергию, необходимую для мышечного сокращения. Простые белки, вступая во взаимодействие с др. веществами, дают начало сложным белкам — протеидам: соединяясь с углеводами, белки образуют , с липидами — , с нуклеиновыми кислотами — . Липопротеиды — основной структурный компонент ; нуклеопротеиды входят в состав хроматина клеточных ядер, образуют клеточные белоксинтезирующие частицы — . См. также , .