Читать «Большая Советская Энциклопедия (ЛА)» онлайн - страница 92

БСЭ БСЭ

  Перечисленные эффекты не исчерпывают всех физических явлений, обусловленных действием Л. и. на вещество. Прозрачные диэлектрики разрушаются под действием Л. и. При облучении некоторых ферромагнитных плёнок наблюдаются локальные изменения их магнитного состояния, что может быть использовано при создании быстродействующих переключающих устройств и элементов памяти ЭВМ. При фокусировке Л. и. внутри жидкости имеет место так называемый светогидравлический эффект, позволяющий создавать в жидкости высокие импульсные давления. Наконец, при плотностях потока излучения ~ 1018—1019 вт/см2 возможно ускорение электронов до релятивистских энергий. С этим связан целый ряд новых эффектов, например рождение электронно-позитронных пар.

  Лит.: Райзер Ю. П., Пробой и нагревание газов под действием лазерного луча, «Успехи физических наук», 1965, т. 87, в. 1, с. 29; Квантовая электроника. Маленькая энциклопедия, М., 1969; Действия излучения большой мощности на металлы, под ред. А. М. Бонч-Бруевича и М. А. Ельяшевича, М., 1970; Басов Н. Г., Крохин О. Н., Крюков П. Г., Лазеры и управляемая термоядерная реакция, «Природа», 1971, № 1; Действие лазерного излучения. Сб. ст., пер. с англ., под ред. Ю. П. Райзера, М., 1968; Басов Н. Г. [и др.], Лазеры в химии, «Природа», 1973, № 5.

  В. Б. Федоров, С. Л. Шапиро.

  Лазерное излучение в биологии. Почти одновременно с созданием первых лазеров началось изучение биологического действия Л. и. Некоторые возможные биолого-медицинские аспекты его использования были намечены Ч. (1962). В последующем оказалось, что возможная сфера применения Л. и. шире. Биолого-медицинские эффекты Л. и. связаны не только с высокой плотностью потока излучения и возможностью фокусировки луча на самых малых площадях, но, по-видимому, и с др. его характеристиками (монохроматичностью, длиной волны, когерентностью, степенью поляризации), а также с режимом излучения. Один из важных вопросов при использовании Л. и. в биологии и медицине — дозиметрия Л. и. Определение энергии, поглощённой единицей массы биообъекта, связано с большими трудностями. Различные ткани неодинаково поглощают и отражают Л. и. Кроме того, Л. и. в разных областях спектра оказывает не одинаковое, а подчас и антагонистическое действие на биообъект. Поэтому и невозможно ввести при оценке эффекта Л. и. коэффициент качества. Характер эффекта Л. и. определяется прежде всего его интенсивностью, или плотностью потока излучения. В случае импульсных излучателей важны также длительность импульсов и частота их следования. Из-за избирательности поглощения Л. и. биологическая эффективность может не соответствовать энергетическим характеристикам Л. и. Условно различают термические и нетермические эффекты Л. и.; переход от нетермических к термическим эффектам лежит в диапазоне 0,5—1 вт/см2. При плотностях потока излучения, превышающих указанные, происходит поглощение Л. и. молекулами воды, что приводит к их испарению и последующей коагуляции молекул белка. Наблюдаемые при этом структурные изменения аналогичны результатам обычного термического воздействия. Однако Л. и. обеспечивает строгую локализацию поражения, чему способствует сильная обводнённость биообъекта и поглощение рассеивающейся энергии в пограничных областях, смежных с облучаемой. При импульсных термических воздействиях ввиду очень короткого времени воздействия и быстрого испарения воды наблюдается так называемый взрывной эффект: возникает султан выброса, состоящий из частиц ткани и паров воды; этому сопутствует возникновение ударной волны, воздействующей на организм в целом.