Читать «Большая Советская Энциклопедия (ЛА)» онлайн - страница 80
БСЭ БСЭ
Среди Л. непрерывного действия видимой и ближней инфракрасной областей спектра наибольшее распространение получил гелий-неоновый Л. Этот Л. представляет собой заключённую в оптический резонатор газоразрядную трубку, заполненную смесью Не и Ne. Он генерирует излучение с l = 0,6328 мкм, т. е. в красной области спектра. Типичные размеры трубки: длина несколько десятков см или 1—2 м; диаметр несколько мм. Мощность генерации обычно составляет десятки мвт. Гелий-неоновый Л. может работать также на целом ряде переходов в ближней инфракрасной области, например на длинах волн l = 1,152 мкм и l = 3,39 мкм. В Л. сравнительно просто реализуется предельно малая, т. е. дифракционная расходимость светового пучка.
Наиболее мощным Л. непрерывного действия в видимой области спектра является аргоновый Л. В нём используется электрический разряд в Ar с большой плотностью тока (до нескольких тысяч а/см2). Он работает на квантовых переходах иона Ar в синей и зелёной областях спектра: l = 0,4880 мкм и l = 0,5145 мкм. Мощность генерации составляет десятки вт. Конструктивно аргоновый Л. значительно сложнее гелий-неонового (необходимы охлаждение и циркуляция газа). Наиболее мощным газовым Л. является Л. на CO2 (l = 1,06 мкм). При непрерывном режиме работы СО2-Л. достигается мощность в десятки квт.
Создано также большое число импульсных газовых Л., работающих, как правило, в переходном режиме формирования разряда. Некоторые из них в режиме коротких импульсов (длительностью ~ 10-9 сек) дают сравнительно высокие пиковые мощности ~ 10 квт. СО3-Л. также может работать в импульсном режиме, обеспечивая мощность 1010 вт.
Газовые Л. способны обеспечить значительно более высокую монохроматичность излучения, нежели Л. всех др. типов. Однако на пути повышения монохроматичности и стабильности частоты излучения Л. возникает целый ряд трудностей как технического, так и принципиального характера. Различные помехи, приводящие к «качанию» частоты Л., можно разделить на два класса: технические, влияющие на собственные частоты резонатора, и физические, сказывающиеся на частоте рабочего перехода. К первым можно отнести дрожание зеркал резонатора, изменение его длины вследствие теплового расширения и т.п. Ко вторым относятся влияние внешних электрических и магнитных полей, флуктуации свойств активной среды и мощности накачки. Для уменьшения роли большинства из этих факторов имеются соответствующие методы защиты. Например, разрабатываются специальные методы автоматической подстройки резонаторов, использующие магнитострикционные явления (см. ), пьезоэффект (см. ) и т.п. В основе этих методов лежит следящая система, которая фиксирует изменение параметров резонаторови обеспечивает соответствующую компенсацию. Наиболее важным фактором, лимитирующим стабильность частоты Л., являются флуктуации давления в рабочем объёме. Форма спектральной линии в газе зависит от давления, т.к. столкновения атомов и молекул в газе приводят к уширению и сдвигу спектральных линий, пропорциональным давлению. Флуктуации давления приводят к флуктуациям частоты рабочего квантового перехода. Поэтому активный газ должен находиться при возможно более низком давлении. С другой стороны, понижение давления приводит к уменьшению коэффициента усиления среды. Это противоречие частично удаётся разрешить методом стабилизации частоты излучения Л. с помощью поглощающей ячейки, помещаемой в резонатор. В поглощающей ячейке находится газ, имеющий спектральную линию поглощения, перекрывающую линию, соответствующую рабочему переходу активной среды. Например, у гелий-неонового Л. для линии l = 3,39 мкм таким газом является метан CH4. Оказалось возможным стабилизировать частоту излучения Л. по частоте линии поглощения метана, причём в условиях, когда давление поглощающего газа значительно меньше активного. С помощью поглощающей ячейки достигнута относительная стабильность частоты излучения ~ 10-13 — 10-14 (см. также ).