Читать «Другая история науки. От Аристотеля до Ньютона» онлайн - страница 5

Сергей Валянский

Парадигмы приобретают свой статус потому, что их использование приводит к успеху скорее, чем применение конкурирующих с ними способов решения некоторых проблем, которые исследовательская группа признаёт в качестве наиболее остро стоящих.

Например, от глубокой древности до конца XVII века не было такого периода, когда придерживались бы единственной, общепринятой точки зрения на природу света. Вместо этого было множество противоборствующих школ и школок, большинство из которых излагало ту или другую разновидность эпикурейской, аристотелевской или платоновской теории. Одна группа рассматривала свет как частицы, испускаемые материальными телами; для другой свет был модификацией среды; ещё одна группа объясняла свет в терминах взаимодействия среды с излучением самих глаз. Помимо этих были другие варианты и комбинации этих объяснений.

Каждая из школ черпала силу в некоторых частных метафизических положениях, и каждая подчёркивала именно тот набор свойств оптических явлений, который её теория могла объяснить наилучшим образом. А нерешённые проблемы откладывали для дальнейшего исследования.

В течение всего XVIII века представление о свете базировалось на «Оптике» Ньютона (1643–1727), который утверждал, что свет есть поток материальных частиц, корпускул. И это поддерживалось большинством. Но в начале XIX века Парижская академия наук объявила конкурс на объяснение явлений дифракции и интерференции, и Огюст Жан Френель (1788–1827) решил эту проблему, исходя из волнового представления о свете. Более того, из его теории следовало, что если на пути света поставить экран, то при определённых условиях в центре тени от экрана будет светлое пятно. Чтобы доказать ложность теории Френеля, решили поставить описанный в его работе эксперимент и… всё подтвердилось. В центре тени было светлое пятно.

Так благодаря работам Френеля и Томаса Юнга (1773–1829), объяснившего, исходя из волновой теории, цвет тонких плёнок (который видел каждый, кто пускал мыльные пузыри) появилось представление о свете, как поперечной волне. И большинство отвергло корпускулярную теорию: все стали приверженцами волновой.

Но вот наступил 1900 год. Макс Планк (1858–1947) показал, что свет — это поток квантов, то есть он может обладать в одних условиях корпускулярными свойствами, а в других — волновыми. И опять научное сообщество было довольно результатом…

Занимаясь историей наук, следует также учитывать, что развитие знания связано не только с выдвижением новых идей. Очень часто большую ценность имеют новые надёжные методы и приборы для уточнения ранее известных категорий фактов.

Между научными прорывами, — то есть в те периоды, которые можно смело назвать временем «нормального» развития науки, — часто происходит подавление фундаментальных новшеств, потому что они неизбежно разрушают основные установки сложившейся, «успокоившейся» науки. На этом этапе Природу пытаются втиснуть в парадигму, как в заранее сколоченную и довольно тесную коробку. Цель науки в такие периоды — в укреплении достигнутого, а не в рассмотрении новых видов явлений, которые не вмещаются в эту «коробку».