Читать «Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы» онлайн - страница 15

Стивен Вайнберг

Хаксли пытался убедить присутствующих, что мир гораздо старше, чем те шесть тысяч лет, которые отведены ему последователями Библии, и что новые живые существа появлялись и эволюционировали с самого начала. Все эти утверждения сейчас общеприняты – никто, имеющий хоть малейшее представление о науке, не сомневается в большом возрасте Земли или реальности эволюции. То, что я хочу обсудить, не имеет никакого отношения к конкретному разделу научного знания, а относится к тому, как все эти знания связаны друг с другом. Именно поэтому я, как и Хаксли, начну с кусочка мела.

Мел белый. Почему? Один ответ, который можно дать сразу, таков: мел белый потому, что он не какого-то другого цвета. Такой ответ безусловно понравился бы лировскому шуту, но на самом деле он не так уж далек от истины. Уже во времена Хаксли знали, что каждый цвет в радуге связан со светом определенной длины волны – более длинные волны соответствуют красному концу спектра, более короткие – голубому. Белый свет рассматривался как смесь света многих разных цветов. При падении света на непрозрачное вещество вроде мела только часть его отражается, а другая часть поглощается. Вещество определенного цвета, например зелено-синего, присущего многим соединениям меди (медно-алюминиевые фосфаты в турмалине) или синего, характерного для соединений хрома, имеет такой цвет потому, что вещество поглощает свет строго определенных длин волн; цвет, который мы видим в свете, отраженном от вещества, связан со светом тех длин волн, которые поглощаются не слишком сильно. Оказывается, что карбонат кальция, из которого и состоит мел, особенно сильно поглощает свет только в области инфракрасных и ультрафиолетовых длин волн, все равно не видимых глазом. Поэтому свет, отраженный от куска мела, имеет практически такое же распределение по длинам волн видимого света, как и свет, падающий на мел. Благодаря этому и возникает ощущение белизны, будь то у мела, облака или снега.

Почему? Почему некоторые вещества сильно поглощают видимый свет определенных длин волн, а другие нет? Оказывается, ответ связан со сравнительными энергиями атомов и света. Ученые начали понимать это после работ Альберта Эйнштейна и Нильса Бора, сделанных в первые два десятилетия ХХ в. Эйнштейн в 1905 г. впервые понял, что световой луч состоит из потока колоссального количества частиц, позднее названных фотонами. У фотонов нет ни массы, ни электрического заряда, но каждый фотон обладает определенной энергией, величина которой обратно пропорциональна длине волны света. В 1913 г. Бор предположил, что атомы и молекулы могут существовать только в определенных состояниях, т.е. стабильных конфигурациях, обладающих определенной энергией. Хотя атомы часто сравнивают с миниатюрными Солнечными системами, все же существует принципиальное различие. Любой планете Солнечной системы можно придать чуть больше или чуть меньше энергии, просто подвинув ее чуть дальше от Солнца или, наоборот, придвинув к нему. Но состояния атома дискретны – мы не можем изменять энергии атомов иначе, как на определенную конечную величину. Обычно атом или молекула находятся в состоянии с наименьшей энергией. Но, поглощая свет, они перескакивают из состояния с наименьшей энергией в одно из состояний с большей энергией (при испускании света происходит обратный процесс). Если объединить идеи Эйнштейна и Бора, то получается, что свет может поглощаться атомом или молекулой, только если длина волны света принимает определенное значение. Эти определенные длины волн отвечают таким энергиям фотонов, которые как раз равны разности энергий между начальным состоянием атома или молекулы и одним из состояний с большей энергией. В противном случае при поглощении фотона атомом или молекулой не сохранялась бы энергия. Типичные соединения меди имеют зелено-синий цвет, потому что существует определенное состояние атома меди, обладающее энергией, на два электрон-вольта большей, чем энергия нормального состояния атома. Поэтому атом особенно легко перепрыгивает в состояние с большей энергией, поглотив фотон с энергией 2 эВ. Длина волны такого фотона равна 0,62 мкм, что соответствует красно-оранжевому цвету, так что после поглощения этого фотона оставшийся отраженный свет имеет зелено-синий оттенок. (Приведенное рассуждение – не просто крайне сложный способ объяснить то, что мы и так знаем про зелено-синий цвет соединений меди; подобная структура энергетических состояний атомов меди проявляется и тогда, когда они получают извне энергию другими способами, например, от пучка электронов.) Мел имеет белый цвет потому что у молекул, из которых он состоит, оказывается, нет таких уровней энергии, куда можно легко перепрыгнуть, поглощая фотоны любого цвета из видимого света.