Читать «Физика – моя профессия» онлайн - страница 57
Александр Исаакович Китайгородский
То же самое касается теоретического расчета зависимостей, имеющих частное значение. Например, можно рассчитать, как зависит давление паров бензола от температуры. Но результаты этого очень сложного расчета не помогут в предсказании поведения паров других веществ. Если так, то проще произвести измерения.
Короче, физика ценит теоретические вычисления, если их результатом окажутся достаточно общие закономерности, охватывающие широкий круг явлений, а исчерпывающее опытное описание этого круга явлений будет занимать несоизмеримо большое время. Только тогда игра стоит свеч.
Казалось бы, довольно ясные вещи. Но, к сожалению, эти правила часто нарушаются естествоиспытателями, правда, теми, кому чуждо физическое мышление…
До сих пор речь шла об архитектурном стиле научных исследований. Теперь стоит сказать несколько слов о том, как обстоят дела строительства фундамента естествознания.
Можно без труда выделить завершенные постройки. Это прежде всего механика, которая умеет безошибочно и с величайшей точностью предсказывать движения тел, если известны действующие на них силы. Это электродинамика, позволяющая рассчитывать электромагнитные поля, если заданы создающие их электрические заряды и токи. Один из красивейших разделов естествознания – статистическая физика командует поведением газов, жидкостей и твердых тел, меняющих свои свойства под влиянием внешних условий. Поведение атомных ядер и электронов с успехом предсказывается квантовой механикой.
Все эти области физики похожи до некоторой степени на эвклидову геометрию: несколько аксиом, и далее строгое дедуктивное изложение, логический вывод бесчисленных следствий, подтверждаемых опытом с той точностью, с которой удалось произвести теоретическое вычисление.
В ряде случаев исходные аксиомы настолько просты, что без труда верится, что это истины в последней инстанции. Так, например, можно показать, что три кита, на которых покоится механика, – закон сохранения энергии, закон сохранения поступательного импульса и закон сохранения вращательного импульса – сводятся к утверждению о равноправности разных мест и направлений пространства.
Однако далеко не все исходные аксиомы науки столь просты. А обязаны ли они быть простыми? Кто может на это ответить? Поль Дирак полагает, что основные аксиомы могут быть и непростыми, но обязательно должны выделяться математическим изяществом и красотой.
Эстетический критерий при обсуждении математических формул?
Да. Оценка уравнений и вычислений как красивых, изящных или, напротив, неуклюжих, громоздких очень распространена среди физиков.
Закон всемирного тяготения Ньютона, несомненно, красивый закон. Вы не согласны со мной? Вы не видите в этой записи ничего красивого?
Но подумайте, сколь эта запись симметрична и проста; именно в симметрии и простоте и заключена красота закона. Представьте себе, что кто-нибудь предложил бы закон тяготения, в котором знаменателем формулы служил бы не квадрат расстояния, а расстояние в степени девять вторых, а в числителе стояло бы не произведение масс, а, скажем, корень квадратный из суммы масс. Некрасивая, неприятная формула. Сомнение в ее справедливости возникло бы сразу, она раздражала бы нас с чисто эстетических позиций.