Читать «Логико-философский трактат» онлайн - страница 8
Людвиг Витгенштейн
(Логическая символика Фреге и Рассела – пример такого языка, хотя, не стану спорить, в нем не устранены все без исключения ошибки.)
3.326. Чтобы опознать символ по его знаку, мы должны обращать внимание на его осмысленное употребление.
3.327. Знак не определяет логическую форму, если не учитывать его логико-синтаксическое окружение.
3.328. Если знак не используется, он не имеет значения. В этом суть принципа Оккама.
(Если все указывает на то, что знак имеет значение, то он имеет значение.)
3.33. В логическом синтаксисе значение знака не играет роли. Должно быть возможно оперировать логическим синтаксисом, не опираясь на значения знаков: предполагается лишь описание выражений.
3.331. Обратимся с учетом этого к «теории типов» Рассела. Очевидно, что Рассел ошибается, поскольку он использует значения знаков, составляя правила их употребления.
3.332. Никакое суждение не может утверждать что-либо о себе, поскольку пропозициональный знак не может содержаться в себе самом (а это суть «теории типов»).
3.333. Причина, по которой функция не может быть собственным аргументом, заключается в том, что функция уже содержит прототип аргумента и не может содержать саму себя.
Предположим, что функция F(fx) является собственным аргументом; в этом случае возникает высказывание «F(F(fx))», в котором внешняя функция
Это становится очевидным, если вместо «F (Fu)» мы запишем «(Ǝφ): F(φu) × φu = Fu». Тем самым устраняется парадокс Рассела.
3.334. Правила логического синтаксиса должны быть самоочевидными, когда известен способ обозначения каждого знака.
3.34. Суждение обладает постоянными и случайными свойствами. К случайным относятся те свойства, которые возникли из конкретного способа порождения пропозиционального знака.
Постоянные свойства – те, без которых суждение не в состоянии выразить свой смысл.
3.341. Таким образом, в суждении постоянно то общее, что есть у всех суждений, выражающих один и тот же смысл.
Точно так же в символе постоянно то общее, что есть у всех символов, служащих выполнению одной задачи.
3.3411. Поэтому можно сказать: то, что есть общего у всех символов, обозначающих объект, является истинным именем объекта. И потому, один за другим, все типы комбинаций оказываются несущественными для имени.
3.342. Пусть в наших обозначениях достаточно условностей, безусловно вот что: если нечто определено произвольно, нечто другое должно иметь место. (Такова природа обозначения.)
3.3421. Важен не конкретный способ обозначения, а то, что он является возможным. Именно так в целом обстоит в философии: раз за разом частное оказывается несущественным, зато возможность частного снова и снова открывает нечто относительно сути мира.