Читать «Превращения гиперболоида инженера Гарина» онлайн - страница 29

Ирина Львовна Радунская

Распределение молекул по их энергии в поле тяжести — самая наглядная иллюстрация закона Больцмана. Он применим не только к молекулам, но и к любым коллективам из большого числа частиц, в том числе и к коллективам, подчиняющимся квантовым закономерностям.

Конечно, как большинство законов, закон распределения Больцмана применим не всегда. Он неприменим, например, если вещество подвергается нагреванию или охлаждению. Но стоит подождать, пока установится тепловое равновесие, и в соответствии с этим законом частиц с большой энергией будет меньше, чем таких же частиц с малой энергией.

Вопрос о взаимодействии электромагнитного поля с веществом, который и привел Планка к открытию принципа квантования, таил в себе одну, казалось, непреодолимую трудность. Трудность, неразрешимую не только в рамках классической физики, но и с привлечением боровской теории строения атома.

Тупик возникал при попытке понять взаимодействие электромагнитного поля с атомами, если частота поля совпадала с частотой спектральной линии атомов.

За дело — вскоре после первой мировой войны — взялся Эйнштейн. Со свойственным ему стремлением отдавать предпочтение глубокому физическому анализу, а не сложной математике, он начал с осмысливания опытных фактов.

Оптикам и до Эйнштейна было известно, что самопроизвольное излучение атомов не зависит от внешних условий, а определяется только свойствами атомов. Напротив, поглощение растет вместе с интенсивностью падающего света. Но никто до него не обратил внимания на то, что эти твердо установленные факты приходят в противоречие с законами термодинамики.

Это был решающий шаг. Второй требовал интуиции и решимости. Вскрыв корень трудностей, нужно было найти выход. Эйнштейн предположил, что в природе существует третий, еще неизвестный процесс, обеспечивающий выполнение законов термодинамики, в справедливости которых убеждал весь опыт человечества. Этот процесс должен был приводить к излучению света, причем оно должно расти при освещении атомов внешним источником.

Очень простые вычисления показали Эйнштейну, что его догадка верна. Оказалось, что внешнее резонансное поле заставляет атомы испускать свет, совершенно неотличимый от падающего света, причем тем сильнее, чем сильнее падающий свет.

Это был чисто теоретический вывод. Вынужденное излучение не поддавалось наблюдению потому, что его маскировало более сильное поглощение. И это не удивительно. Ведь в обычных условиях атомов-приемников всегда больше, чем атомов-передатчиков. А из вычислений Эйнштейна следовало, что действие каждого атома-приемника способно скомпенсировать действие одного атома-передатчика. Значит, в избытке всегда остаются атомы-приемники и их поглощающее действие должно преобладать.