Читать «Превращения гиперболоида инженера Гарина» онлайн - страница 16

Ирина Львовна Радунская

Еще во время войны специалисты, занимавшиеся созданием радиолокаторов на более короткие волны, встретились с загадочным явлением, которое долго не находило объяснения. Пучок радиоволн длиной в 1,3 сантиметра, посланный радиолокатором в поисках цели, «растворялся» в пространстве. Казалось, что кто-то невидимый ставил на пути лучей ловушку и большая часть радиоволн захлопывалась в ней. Причина этого явления была неясна. Было лишь очевидно, что из-за сильного поглощения применять радиоволны длиной 1,3 сантиметра для радиолокации невозможно.

Странное явление очень заинтересовало ученых. Начались поиски разгадки. Пропуская радиоволны через разреженные газы, ученые убедились в том, что многие из них сильно поглощают короткие радиоволны. Азот и кислород, например, пропускают без изменения радиоволны длиной в 1,3 сантиметра, а водяные пары поглощают их. Различные газы поглощают не все проходящие через них радиоволны, а лишь те, которые имеют определенную длину. Остальные они пропускают, не задерживая.

Создавалось впечатление, что молекулы как-то настроены на эти волны и поэтому поглощают только их. Этим свойством молекулы напоминают радиоприемники. Ведь радиоприемники обладают способностью отделять сигналы одной радиостанции от сигналов остальных. И молекулы, подобно радиоприемникам, принимают лишь те волны, на которые они «настроены».

Короче говоря, стало ясно, что газы способны избирательно поглощать радиоволны. Волны определенной длины поглощались атмосферой много сильнее, чем остальные. Правда, еще в начале тридцатых годов на основе исследования оптического спектра молекулы аммиака было предсказано, что эта молекула должна сильно поглощать радиоволны длиной около 1,25 сантиметра. Более того, уже в 1934 году Клитон и Вильяме обнаружили такое поглощение. Но это не было таким уж сенсационным открытием, и радиолокаторщики не связали с ним свое удивительное наблюдение.

Вся эта чертовщина особенно взволновала физиков из лаборатории колебаний ФИАНа. Они уловили в этой ситуации какие-то очень знакомые нотки. Нет, это было не то же самое, но явление в чем-то перекликалось с явлением комбинационного рассеяния света, открытого их учителем Мандельштамом! Только там речь шла о свете, а здесь — о радиоволнах. Но это было не принципиальное различие, ведь и то и другое — электромагнитные волны. Физиков не смущало, что картина во многом носила противоположный характер. Мандельштам заметил, что вещество, сквозь которое проходит свет, кое-что добавляет к нему (лишние частоты — комбинационные, как назвал их Мандельштам), а у радиоволн отнимает. Если вещество облучать радиоволнами различных частот, то в зависимости от его состава оно поглотит кое-какие из этих волн. Чем не новый способ анализа неизвестных смесей? Конечно же, ученые не могли пройти мимо внезапно открывшейся возможности.

Поглощение газами радиоволн определенной длины было тем явлением, которое натолкнуло ученых на использование радиоволн в совершенно новых целях. Для радиоспектроскопии, как назвали новую область исследования, рожденной из союза радио и спектроскопии — науки очень молодой и очень старой, — наступило хорошее время. Кончилась война, и физикам досталась масса радиоламп и всякой другой аппаратуры, приспособленной для работы в диапазоне сантиметровых радиоволн. Они применили все это для исследования спектров атомов и главным образом молекул и убедились, что во многих отношениях радиоспектроскопия превосходит оптическую спектроскопию. Прежде всего по точности и чувствительности, а в некоторых случаях и по быстроте исследования. Оказалось, с радиоволнами легче иметь дело, чем со светом.