Читать «Беседы о бионике» онлайн - страница 336

Изот Борисович Литинецкий

При втором, бионическом, подходе, преследующем цель создания высокосовершенных кибернетических устройств, ученые стремятся строить модели, способные воспроизводить гибкие логические функции нейрона и применимые в устройствах технической кибернетики. Эти модели, естественно, должны быть лишены ряда "недостатков", присущих (с инженерной точки зрения) живым нервным клеткам. Так, например, моделирование такого явления, как пониженная возбудимость в течение относительно длительного периода, необходимого для отдыха и пополнения запаса энергии, израсходованного при возбуждении нейрона, может сказаться на быстродействии кибернетического устройства, что в ряде случаев крайне нежелательно.

Рис. 4. Обобщенная блок-схема искусственного нейрона

Абстрагируясь от физиологических особенностей и используя только "логику" нейронов, ученые за последние годы создали ряд формальных моделей нервной клетки, для которых характерны, например, следующие признаки: активность нейрона, т. е. его способность генерировать выходной сигнал, подчиняется принципу "все или ничего", "да — нет", "нуль — единица"; возбуждению нейрона предшествует некоторый период накопления сигналов возбуждения от ограниченного числа входов (синапсов). Это время не зависит от предыдущего состояния нейрона (рефрактерность не моделируется), число сигналов и порог не зависят от расположения синапсов в нейроне; запаздывание в схеме происходит только в синапсах. Обобщенная блок-схема такой модели показана на рис. 4.

Рис. 5. Принципиальная электрическая схема модели нейрона

Как видно из рисунка, входные воздействия поступают на сумматор, где происходит их пространственное суммирование. Линия задержки имитирует замедление сигнала на синапсах и осуществляет временное суммирование. Вентиль пропускает обработанный предыдущими каскадами сигнал на пороговое устройство, срабатывающее только при достижении сигнала на его входе определенного уровня. Передача возбуждения через вентиль в обратном направлении невозможна.

На рис. 5 приведена электрическая схема модели нейрона, выполненная на транзисторах. Суммирование входных воздействий осуществляется резисторами R1. Изменяя их величину, можно менять степень влияния данного входа на состояние "нейрона". Совместно с С1 они выполняют и функцию задержки. В качестве порогового элемента здесь применен ждущий мультивибратор, собранный на транзисторах Т2 и Т3 В устойчивом состоянии Т3 открыт и потенциал на его коллекторе примерно равен нулю, вследствие чего Т2 закрыт. Дополнительное запирающее смещение, снимаемое с резистора R8, определяет порог срабатывания мультивибратора. Сигнал на мультивибратор подается через эмиттерный повторитель, который обеспечивает одностороннюю передачу и выполняет роль вентиля с одновременным усилением результирующего возбуждения. При достижении порогового уровня возбуждения схема переходит в состояние квазиравновесия, при котором напряжение на коллекторе Т2 быстро падает до нуля. Длительность пребывания в этом состоянии определяется емкостью конденсатора С3 и сопротивлением резистора R4. Через время t ≈ 3R4C3 сек происходит опрокидывание схемы. При этом на выходе возбуждения формируется положительный , а на выходе торможения — отрицательный импульсы длительностью t.