Читать «Человек на все рынки: из Лас-Вегаса на Уолл-стрит. Как я обыграл дилера и рынок» онлайн - страница 3
Эдвард Торп
С их простотой. С их абсолютной простотой.
Именно простота и ясность его достижений и идей делает их столь незаметными в мире чистой науки и столь полезными на практике. Я не пытаюсь дать здесь толкование или краткое изложение этой книги; Торп – как и следовало ожидать – пишет прямо, ясно и увлекательно. Я хочу показать со своей точки зрения, точки зрения трейдера и практикующего финансового математика, значение этой работы и ее место в контексте сообщества трейдеров-исследователей и специалистов по рискам в целом, к которому принадлежу и я сам.
Вот этот контекст. Эд Торп стал первым современным математиком, сумевшим
Главный и наиболее колоритный из его предшественников, Джироламо (по другим сведениям, Джеронимо) Кардано, эрудит и математик XVI века, написавший своего рода первый вариант книги «Обыграй дилера», был гэмблером, лудоманом. Его игра была, мягко говоря, не особенно успешной – не в последнюю очередь потому, что игроки с патологической зависимостью плохо оценивают риски. Чтобы убедиться в этом, достаточно взглянуть на роскошь Монте-Карло, Лас-Вегаса и Биаррица, созданных именно за счет их маниакальной страсти. Написанная Кардано «Книга об играх случая» (Liber de ludo aleae), сыграла важную роль в последующем развитии теории вероятностей, но, в отличие от книги Торпа, служила источником вдохновения не столько для игроков, сколько для математиков. Еще один математик, бежавший в Лондон французский протестант Абрахам де Муавр, завсегдатай игорных притонов и автор труда «Доктрина случайностей, или Способ вычисления вероятностей событий в игре» (The Doctrine of Chances: or, A Method for Calculating the Probabilities of Events in Play, 1718), также с трудом сводил концы с концами. Легко насчитать еще с полдюжины математиков, игравших в азартные игры, в том числе таких великих, как Ферма и Гюйгенс, которые либо не интересовались их практической стороной, либо так и не смогли ею овладеть. До Эда Торпа любовь математиков к случайности оставалась по большей части безответной.
Метод Торпа сводится к следующему: он сразу берет быка за рога, определяя явное