Читать «Беседы об атомном ядре» онлайн - страница 115
Вера Александровна Черногорова
Такой метод нагрева не очень-то эффективен. С его помощью можно получить плазму лишь с такими параметрами, которые позволяют только-только свести концы с концами. Добываемая термоядерная энергия никогда не превысит энергии, затраченной на разогрев вещества.
В 1972 году группа американских ученых предложила новую схему лазерного термоядерного синтеза с выигрышем энергии в сотни раз за счет еще большего повышения плотности мишени. По их замыслу, твердый шарик из замороженной смеси дейтерия и трития со всех сторон облучается световыми пучками лазеров. На поверхности сферы должен появиться слой горячей плазмы в виде короны. В перегретой и плотной «короне» должно возникнуть давление до сотен миллиардов атмосфер и разнести плазму во все стороны (и к центру сферы, естественно).
Вот этот «пресс» из быстрых частиц, по идее, и должен уплотнить внутренние области мишени, нагревая их за счет работы сил сжатия. Плазма тотчас приобрела бы плотность, может быть, в сотни раз превышающую плотность твердого тела, и скорость термоядерных реакций при такой плотности резко возросла бы: ядра дейтерия и трития чаще сталкивались бы друг с другом.
Первые эксперименты по сжатию плазмы до сверхплотных состояний были поставлены в Физическом институте имени П. Н. Лебедева. Там под руководством Н. Басова в 1970 году была создана уникальная лазерная установка для сферически симметричного облучения мишени. За короткое время, приблизительно равное 10–9 секунды, девять лазерных пучков установки обрушивали на твердый шарик диаметром 10–2 сантиметра, помещенный в центре вакуумной камеры, энергию в 1000 джоулей. Световые лучи практически одновременно, с точностью до 10–10 секунды, сходились в одной точке, создавая плазму и вызывая в ней термоядерную реакцию.
Мгновенный, по сути дела, процесс образования и разлета плазмы ученые анализировали с помощью киноаппарата, только не обычного, а лазерного сверхскоростного с частотой съемки до 1 миллиарда кадров в секунду. Аналогичные термоядерные установки были запущены во Франции и США. Однако проблема лазерного управляемого термоядерного синтеза еще далеко не решена.
В сверхсжатой мишени термоядерные реакции обещают стать энергетически выгодными, если увеличить мощность лазеров до 105–106 джоулей и выполнить жесткие требования по отношению к форме лазерного импульса.
Но сотрудники ФИАНа и Института прикладной математики АН СССР разработали новую схему термоядерного синтеза. Эта схема дает возможность получать в 1000 раз больше энергии по сравнению с затрачиваемой на создание плазмы и одновременно отменяет особые требования на форму светового лазерного импульса.
Идея заключается в сжатии лучами лазеров не твердых шариков, как это было в предыдущем случае, а мишеней, представляющих собой тонкие сферические оболочки, состоящие из целого набора слоев легких веществ, тяжелых и термоядерного горючего.
Лазеры с импульсами простой формы и с общей мощностью в миллион джоулей сжимают вещество мишени до плотности, почти в 10 раз большей, чем у самого тяжелого химического элемента. Из теоретических оценок следует, что в этих условиях термоядерные реакции синтеза будут энергетически выгодными.