Читать «ЗНАК ВОПРОСА 1994 № 04» онлайн - страница 162

Станислав Николаевич Славин

Тогда-то специалисты и вспомнили снова о полипланных системах. В 1955 году ученые ЦАГИ и Высшей военно-инженерной академии имени Н. Е. Жуковского образовали коллектив, который не был предусмотрен штатными расписаниями. Под руководством только что защитившегося доктора технических наук С. М. Белоцерковского нештатный коллектив энтузиастов стал всесторонне изучать полипланные системы, а точнее одну из их разновидностей — решетчатые крылья.

Что такое решетчатое крыло? Помните, в начале этой главы мы упоминали о конструкции английского инженера-изобретателя Г. Филлипса. Сорок плоскостей, скрепленных между собой, вот это и есть решетчатое крыло в первом приближении. Оно благодаря множеству плоскостей обладает хорошей подъемной силой, но, как показали эксперименты, самолет Филлипса оказался совершенно неустойчив в полете.

Почему? Можно ли исправить положение? Как? В этом группе Белоцерковского и предстояло разобраться. Причем интерес этот вовсе не был чисто теоретическим.

Да, конечно, в трудах основоположников аэродинамики Н. Е. Жуковского и С. А. Чаплыгина прямо указывалось, что полипланные системы обладают определенными преимуществами перед монопланными. Например, у монопланных крыльев при больших — до 30° — углах атаки происходит срыв воздушного потока и резкое уменьшение подъемной силы. «Решетка» же позволяет достичь безотрывного обтекания потока и при 50°.

Но участники группы помнили и о практических опытах В. Ф. Шушанова, который еще в конце 40-х годов хотел использовать решетчатые крылья на планирующих торпедах. Такая торпеда, сброшенная с самолета, должна была спланировать в заданный квадрат на складных, весьма небольших по размерам, но очень эффективных крыльях. При испытаниях из нескольких вариантов наилучшим образом проявили себя именно полипланные, решетчатые конструкции.

А главное, энтузиастов продвигало вперед само время. Вспомните, ведь то был 1955 год. Еще через два года весь мир всколыхнет известие о первом искусственном спутнике. А люди, работавшие над проблемами освоения космического пространства, думали не только о том, как взлететь в космос, но и как оттуда вернуться…

При решении же проблемы спуска с орбиты решетчатые крылья могли проявить себя с самой лучшей стороны. Компактные, с хорошими аэродинамическими качествами, они и места занимали немного при старте, и при спуске могли эффективно вывести спускаемый аппарат в заданную точку.

Понятно, конечно, что для данных целей решетчатые конструкции из деревянных планок и даже из дюраля не годились. Здесь нужны были сплавы, могущие выдержать и высокотемпературный нагрев, и огромные механические нагрузки, возникающие при движении со сверхзвуковыми скоростями. Нужно было также прояснить, какой именно должна быть геометрия таких решеток, чтобы они одинаково хорошо работали в широком диапазоне скоростей, ведь они служат не только для планирования, но и для аэродинамического торможения, помогают снизить скорость спускаемого аппарата до того предела, после которого уже может вступить в действие парашютная система.