Читать «Понять небо» онлайн - страница 135
Дэннис Пегин
Воздух поднимается адиабатически (без обмена теплом, охлаждаясь примерно 1 °C/100 м из-за расширения) пока не достигнет высоты точки росы (в данном случае 1220 м), где начнется конденсация. С превращением водяных паров в дождь выделяется дополнительное тепло и воздух уже меньше охлаждается (примерно 0,82 °C/100 м). Это продолжается до вершины горы. На подветренном склоне воздух быстро нагревается сжимаясь и конденсация прекращается. В дополнение воздух нагревается примерно 1 °C/100 м и температура на подветренном склоне выше чем на той же высоте наветренного склона. Кроме того воздух очень сухой из-за того, что отдал много влаги осадками.
ТЕРМИЧЕСКАЯ BOUYANCY
Термическая bouyancy (выталкивающая сила, действующая на некоторый объем более теплого воздуха, а значит более легкого) сильно увеличивается после начала образования облаков при высвобождении скрытого тепла когда имеет место процесс конденсации. До формирования облаков скорость вверх может уравновешивать ее с силами сопротивления. Bouyancy базируется на принципе Архимеда:
Bouyancy равна произведению массы на ускорение гравитации и на отношение превышения температуры воздуха в термике к температуре окружающего воздуха. Выразив массу через объем и плотность, мы имеем:
Движение термического потока вверх без ускорения будет когда bouyancy равна силе сопротивления, то есть D = В
Из этого равенства видно, что скорость потока вверх зависит от двух факторов: разности температур и диаметра потока. Разность температур зависит от того, насколько сильно нагрелся воздух при формировании потока и от градиента. Чем больше диаметр термика, тем больше его скорость. Таким образом можно сделать вывод, что чем больше поток, тем быстрее он поднимается при том же градиенте.
Термический поток ускоряется до той высоты, где уравновешиваются сила сопротивления и bouyancy. Позднее он замедляется с уменьшением градиента и при перемешивании с окружающим воздухом. Мы можем сделать вывод, что замедляясь с высотой, термик движется в более стабильных условиях, ускорение потока говорит о нестабильности, как показано ранее на рисунке 180.
НАЧАЛЬНАЯ ТЕМПЕРАТУРА ОБРАЗОВАНИЯ ТЕРМИЧЕСКИХ ПОТОКОВ
Очень важной информацией для парящих пилотов есть начальная температура образования термических потоков и время начала их образования (trigger time, trigger temperature), которые определяют начало термичной погоды. На рисунке мы видим градиент температуры с ночной инверсией у земли (толстая линия). Для того, чтобы термический поток поднялся выше инверсии, он должен нагреться у поверхности до температуры не менее 15° (точка А), в противном случае он будет тормозиться в слое инверсии.
Заштрихованная площадь треугольника пропорциональна количеству тепла требуемому для изменения градиента температуры. Мы можем посчитать эту площадь следующим образом: умножить высоту треугольника (в данном случае 610 м) на половину разности температур (здесь 15° -1° = 14°). Получим в этом примере 610 м — 7,0° = 4270 градусо-метров.