Читать «До и после Победы. Перелом. Часть 1» онлайн - страница 77

Сергей Владимирович Суханов

Глава 9

И сорок второй и сорок третий мы работали только по статически устойчивым ракетам, которые, если к ним кратковременно приложить возмущающее их полет воздействие, через некоторое время возвращаются в первоначальное положение. Так-то, при достаточно мощных приводах органов управления, высоком быстродействии самих этих органов и достаточности их аэродинамических усилий, можно отправлять в полет хоть стол — просто рулевым приводам придется сильнее компенсировать постоянно возникающие опрокидывающие моменты, отчего частота колебаний приводов будет очень высокой и с довольно большими амплитудами. И как раз статически устойчивая ракета требует меньших частот колебаний приводов, чем статически неустойчивая, то есть ей требуется реже "махать" рулями — ведь она стремится вернуться в стабильное состояние, как бы сама гасит возникающие от возмущений колебания, а вторую — наоборот — надо постоянно возвращать в устойчивое состояние — и для них нужны рули с частотой колебаний — точнее — управляющих поворотов — как минимум в два-три раза выше, чем для устойчивой, то есть стабильной ракеты. Соответственно, неустойчивой ракете требуется более мощный привод, что увеличивает массу оборудования, а следовательно и ракеты. Правда, есть и обратная зависимость — статически устойчивая ракета требует больше усилий для поворотов, то есть при одинаковых приводах она менее маневренная, и чтобы повысить маневренность, ей, наоборот, потребуются более мощные приводы. Так что после некоторых значений потребных угловых скоростей поворота выгоднее применять как раз неустойчивые ракеты. Но пока, для сравнительно небольших скоростей наших целей, было разумнее применять статически устойчивые ракеты, тем более что не требовалось попадать ракетой непосредственно в самолет, а можно было подорвать ее на некотором расстоянии — поражающие элементы и ударная волна вполне способны разрушить или хотя бы повредить тонкие элементы конструкции немецких самолетов — все-таки это не баллистическая ядерная боеголовка, и даже не бронированный ударный вертолет.

Но и на этом пути нашим ракетчикам пришлось хорошенько потрудиться. Ведь, к сожалению, нельзя просто так взять и поменять, скажем, длину ракеты, или размах крыльев — от этого меняется вся аэродинамика ракеты. При ее полете аэродинамическое сопротивление приложено в центре давления и давит назад. И при маневрах аэродинамические силы прикладываются к центру давления. А вращаться под действием этих сил ракета будет вокруг центра масс всех ее частей. И в зависимости от их взаимного расположения этих центров характер вращения будет различным, а в зависимости расстояния, или плеча между этими центрами — зависит скорость этого вращения. Можно представить ракету в виде стержня, который прибит гвоздем в центре масс, а аэродинамические силы — рукой, которая толкает стержень в точке, соответствующей центру давления, причем толкает, как правило, не точно вдоль стержня, а почти всегда — под некоторым углом. Так, если центр масс находится впереди центра давления, то получается, что толкание выполняется в направлении от центра масс, то есть стержень как бы тянут. Поэтому, слегка повернувшись вокруг центра масс, ракета успокоится в новом положении, до следующего толчка — это статически устойчивая ракета. А вот если центр масс находится сзади, то аэродинамические силы, наоборот, направлены в сторону центра масс и опрокидывают ракету, поворачивая ее вокруг центра масс вверх или вниз или вправо-влево — ракета получается статически неустойчивой. Поэтому местоположение этих двух центров оказывает определяющее влияние на устойчивость ракеты в полете. Да и не только ракеты, а любого летящего тела.