Читать «ИНЖЕНЕРНАЯ ОНТОЛОГИЯ. ИНЖЕНЕРИЯ КАК СТРАНСТВИЕ» онлайн - страница 365

В. Никитин

Нанотехнологии, обычно, понимают, как технологии, оперирующие размерами менее 100 нм, хотя бы в одной измерении. И тогда мы можем говорить нанопленках; нанонитях, нанотрубках, нановолокнах; наночастицах, нанопорошках; наномеханизмах; наноустройствах (наноэлектроника).

Для работы на расстояниях порядка десятков-сотен нанометров используются технологии различного происхождения и назначения, работающие на совершенно различных принципах. Прежде всего, это атомно-силовой зондовый микроскоп, посредством которого удается измерять межатомные расстояния и перемещать отдельные атомы. Затем — физические технологии взрыва проводников и плазменного синтеза, химические по своему происхождению технологии восстановления тонких пленок и молекулярного наслаивания, смешанная технология ионного наслаивания. Весьма распространена технология микролитографии, имеющая «инженерное» происхождение, практически, это «продвинутая» технология изготовления печатных плат. В микролитографии, плазменном синтезе и взрывах проводников в качестве источников энергии могут применяться мощные коротковолновые лазеры.

Понятно, что столь разнородные технологии применяются для решения разнородных задач, и объединяет эти технологии лишь способность воздействовать на материю на субмолекулярном уровне. Заметим здесь, что характерные расстояния и энергии могут отличаться для различных нанотехнологий в сотни — тысячи раз.

На наш взгляд, размерные ограничения фиксируют лишь формальные сторону дела. Нанотехнологии используют квантовомеханические эффекты. В этом их главное отличие от любых других технологий.

Можно рассматривать нанотехнологии как результат взаимодействия квантовой механики и обычных индустриальных технологий — металлургических, химических, электротехнических и электронных, машиностроительных и т. п.

Информационная структура ТП «Нанотехнологии»

Информационная составляющая нанотехнологического пакета еще более обширна и значима, нежели в случае биологических или информационных технологий. Можно сказать, что нанотехнологии лежат на магистральном пути развития физики.

Физика участвует в формировании комплекса знаний, задающих развитие нанотехнологий, в четырех логиках:

Во-первых, классическая механика, развитие которой привело к созданию электродинамики и возникновению специальной теории относительности;

Во-вторых, оптика, которая в процессе своего развития породила лазерную физику, с одной стороны, и комплекс все более мощных измерительных приборов — лупа, оптический микроскоп, фазово-контрастный микроскоп, электронный микроскоп, атомно-силовой зондовый микроскоп;

В-третьих, метрология, развитие которой породила использующую зондовый микроскоп технологию измерения нанообъектов;

В-четвертых, классическая механика, оптика, электродинамика привели к созданию ранних моделей атома, открытию электрона и формированию комплекса представлений, получивших название квантовой механики.

Квантовая механика опирается на гипотезу Планка о квантованности энергии и законы Эйнштейна, описывающие явление фотоэффекта. На этой базе были сформулированы основополагающие принципы соответствия, дополнительности и неопределенности, первоначально интерпретированные в языке корпускулярно-волнового дуализма.