Читать «10% Human. Как микробы управляют людьми» онлайн - страница 237
Аланна Коллен
9. Hehemann, J.-H. et al. (2010). Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464: 908–912.
10. Cani, P.D. et al. (2007). Metabolic endotoxaemia initiates obesity and insulin resistance. Diabetes 56: 1761–1772.
11. Neyrinck, A.M. et al. (2011). Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice. PLoS ONE 6: e20944.
12. Everard, A. et al. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences 110: 9066–9071.
13. Maslowski, K.M. (2009). Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461: 1282–1286.
14. Brahe, L.K., Astrup, A. and Larsen, L.H. (2013). Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic disorders? Obesity Reviews 14: 950–959.
15. Slavin, J. (2005). Dietary fibre and body weight. Nutrition 21: 411–418. 16. Liu, S. (2003). Relation between changes in intakes of dietary fibre and grain products and changes in weight and development of obesity among middle-aged women. American Journal of Clinical Nutrition 78: 920–927. 17. Wrangham, R. (2010). Catching Fire: How Cooking Made Us Human. Profile Books, London.
Глава 7
1. Funkhouser, L.J. and Bordenstein, S.R. (2013). Mom knows best: The universality of maternal microbial transmission. PLoS Biology 11: e10016331.
2. Dominguez-Bello, M.-G. et al. (2011). Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology 140: 1713–1719.
3. Se Jin Song, B.S., Dominguez-Bello, M.-G. and Knight, R. (2013). How delivery mode and feeding can shape the bacterial community in the infant gut. Canadian Medical Association Journal 185: 373–374.
4. Kozhumannil, K.B., Law, M.R. and Virnig, B.A. (2013). Cesarean delivery rates vary tenfold among US hospitals; reducing variation may address quality and cost issues. Health Affairs 32: 527–535.
5. Gibbons, L. et al. (2010). The global numbers and costs of additionally needed and unnecessary Caesarean sections performed per year: Overuse as a barrier to universal coverage. World Health Report Background Paper, No. 30.
6. Cho, C.E. and Norman, M. (2013). Cesarean section and development of the immune system in the offspring. American Journal of Obstetrics & Gynecology 208: 249–254.
7. Schieve, L.A. et al. (2014). Population attributable fractions for three perinatal risk factors for autism spectrum disorders, 2002 and 2008 autism and developmental disabilities monitoring network. Annals of Epidemiology 24: 260–266.
8. MacDorman, M.F. et al. (2006). Infant and neonatal mortality for primary Cesarean and vaginal births to women with ‘No indicated risk’, United States, 1998–2001 birth cohorts. Birth 33: 175–182.
9. Dominguez-Bello, M.-G. et al. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences 107: 11971–11975.