Читать «На плечах гигантов» онлайн - страница 124

Стивен Уильям Хокинг

Наиболее важное из того, что нам дает опыт о распределении материи, заключается в том, что относительные скорости звезд очень малы по сравнению со скоростью света. На этом основании я полагаю, что на начальном этапе в основу наших рассуждений можно положить приближенное допущение: пусть существует координатная система, относительно которой материю можно рассматривать находящейся в течение продолжительного времени в покое. По отношению к этой координатной системе контравариантный тензор материи Tμν, в силу (5), имеет следующий простой вид:

(6)

Скаляр ρ (средней) плотности распределения изначально может быть зависимым от пространственных координат, но, предположив, что мир пространственно замкнут, мы можем сформулировать гипотезу о том, что ρ не зависит от места. Эту гипотезу мы положим в основу дальнейших рассуждений.

Что касается гравитационного поля, то из уравнения движения материальной точки

следует, что материальная точка в статическом гравитационном поле может находиться в покое только тогда, когда g44 не зависит от места. Так как, кроме того, мы для всех величин предполагаем независимость от временной координаты х4, то для искомого решения можем потребовать, чтобы для всех xν

g44 = 1. (7)

Далее, как это обычно делается в статических задачах, примем, что

g14 = g24= g34= 0. (8)

Остается определить те компоненты потенциала гравитационного поля, которые характеризуют чисто пространственно-геометрические свойства нашего континуума (g11, g12, …, g33). Из введенного допущения о равномерности распределения масс, создающих поле, следует, что и кривизна искомого метрического пространства должна быть постоянной. Таким образом, при заданном распределении масс искомый замкнутый континуум (х1, х2, х3 при постоянном х4) должен быть сферическим пространством.

Такое пространство можно получить, например, если исходить из евклидова пространства (ξ1, ξ2, ξ3, ξ4) четырех измерений с линейным элементом . В этом случае

(9)

Рассмотрим в этом пространстве гиперповерхность

(10)

где R – постоянная. Точки этой гиперповерхности образуют трехмерный континуум – сферический объем с радиусом кривизны R.

Четырехмерное евклидово пространство, из которого мы исходили, служит только для удобного определения нашей гиперповерхности. Нас интересуют только точки этой поверхности, метрические свойства которой должны совпадать со свойствами физического пространства с равномерным распределением материи. Для описания этого трехмерного континуума воспользуемся координатами ξ1, ξ2, ξ3 (проекции на гиперплоскость ξ4 = 0), так как, в силу (10), можно ξ4 выразить через ξ1, ξ2, ξ3. Исключая ξ4 из (9), получаем следующее выражение для линейного элемента сферического пространства:

где δμν = 1, если μ = ν, и δμν = 0, если μ =/ ν,

.

Выбранные координаты удобны, когда речь идет об исследовании окрестности точки ξ1 = ξ2 = ξ3 = 0.

Итак, теперь у нас есть также и линейный элемент искомого четырехмерного пространственно-временного мира. Очевидно, для потенциалов gμν, у которых оба индекса отличаются от 4, мы должны написать