Читать «Лысенко был прав!» онлайн - страница 57
Сигизмунд Сигизмундович Миронин
В 1989 г. премию дали за открытие каталитических свойств рибонуклеиновых кислот. В 1993 г. одна премия была присуждена за открытие интронов, а другая ― по химии ― и за изобретение метода полимеразной цепной реакции. В 1995 г. «за открытия, касающиеся генетического контроля на ранней стадии эмбрионального развития». Работы в области генетики развития, выполненные на одном из классических модельных организмов генетики Drosophila, положили основание современному пониманию универсальных эволюционно-закреплённых правил, контролирующих развитие животного.
В 1999 г. Нобелевской премией отмечено доказательство того, что судьба и строение белка полностью закодирована в последовательности его аминокислот (вот как звучит открытие — «за обнаружение в белковых молекулах сигнальных аминокислотных последовательностей, ответственных за адресный транспорт белков в клетке»).
Последними общепризнано крупными открытиями в области молекулярной биологии стали открытие возможности блокировать синтез определенного белка с помощью введение в цитоплазму клетки коротких цепей РНК, комплементарным определенным участкам мРНК данного белка, открытие теломеров и теломераз и открытие механизма работы теломеразы. В 2006. г. Э. Файер и К. Мелло (первый и последний автор статьи в Природе, опубликованной в 1998 г.) получили Нобелевскую премию "за открытие РНК-интерференции — эффекта гашения активности определенных генов. А в 2009 г. Нобелевская премия по физиологии и медицине была дана "за открытие механизмов защиты хромосом теломерами и фермента теломеразы". В том же году Нобелевская премия по химии была присуждена за расшифровку трехмерной структуры рибосом с высоким разрешением.
2.7. ГЕНЕТИКА В РОССИИ И СССР
Генетика в России стала развиваться только с 1914 г. В 1915–1919 г.г. в России возникли две основные генетические школы: Н. К. Кольцова в Москве и Ю. А. Филипченко в Петрограде.
После Октябрьской революции 1917 года до 30 годов был золотой век классической генетики СССР. Симпсон (220) назвал 18 основателей новой генетики и популяционной генетики. Среди них 4 из России/СССР: Четвериков, Тимофеев-Ресовский, Дубинин и Добжанский. Кроме них славу советской генетики составили Вавилов, Кольцов, Серебровский, Дубинин, Филипченко, Карпеченко. Г. Д. Карпеченко выполнил свои классические теперь работы по получению плодовитого капустно-редечного гибрида. Другим (уже зрелым) ученым, также работавшим с Н. И. Вавиловым, был Г. А. Левитский (1878–1942).
В середине тридцатых годов, по мнению многих современных ученых, советская генетика, несомненно, стояла на втором месте в мире после США. Наиболее крупной фигурой российской генетики был и надолго останется, Н. И. Вавилов, описавший в1922 г. сходство во внешнем строении различных органов растений (так называемые гомологичные ряды) и уточнивший в 1927 г. идею Декандоля о центрах происхождения культурных растений. Заслуги Вавилова еще при жизни были оценены современниками. Его имя было занесено на обложку основного в то время генетического журнала "Наследственность" ("Heredity") вместе с именами других крупнейших генетиков мира. Кстати, я не нашел упоминания имени Вавилова в последнем обзоре об иммунитете растений (179) не только как основателя данного направления, а вообще.