Читать «Вычислительное мышление: Метод решения сложных задач» онлайн - страница 59
Питер Макоуэн
На заре нейронных сетей такого рода логика представляла собой большую проблему. Нейронные контуры, которые тогда назывались отлично работали с И, ИЛИ и с другими простыми операциями в булевой логике, но не могли справиться с досадным моментом исключения. Причина состояла в их геометрии. Оказалось, что перцептрон работал, создавая границу решения — линию на графе. При достаточном сигнале на вводе перцептрон переходил через границу. Это зависело от весов и порогов восприятия в контуре (наши значения И1, И2 и Д в предыдущей игре). Пока явления, для которых мы хотели получить разный выход, были по разные стороны границы решения, все было хорошо — перцептрон работал.
Но в случае с функцией «исключающее ИЛИ», где нам нужна линия в соответствии с таблицей на рис. 48, ничего не получилось. Если изобразить это на графе с использованием данных координат (где красный — 1, а черный — 0), то окажется, что на выходе невозможно отделить ответы, равные 0, от ответов, равных 1. Нельзя создать систему, в которой, когда вас толкают через границу, одно состояние сменяется другим (см. рис. 49).
И вот идея: если каждый перцептрон может нарисовать только одну линию, нужно использовать больше перцептронов. Если один перцептрон будет питать другой и получится так называемый то каждый слой будет определять линию решения и мы сможем использовать две линии.
Можно ли его сделать?
Да, сделать его можно. Есть несколько способов создать нейронные контуры, которые могут работать с исключающим ИЛИ или играть в «Снап!», и на рис. 50 представлен один из таких способов. Заметим, что здесь мы используем в виде чтобы показать нейронный контур. В конечном итоге главное здесь — нейроны и их взаимосвязи. Еще мы от внутренних подробностей работы нейронов и сосредотачиваемся на их усвоенном поведении.
Теперь у нас есть нейронная сеть из четырех взаимосвязанных нейронов. У нас два нейрона на входе — ВХ1 и ВХ2, которые определяют цвет видимых ими карт. Они дадут на выходе 1, если карта красная, и 0 — если черная. Этот результат идет в нейрон Д (дом) во втором слое. Порог для его активации — 1,5 (то есть он активируется при условии, что сумма сигналов на входе больше 1,5), но сам он дает на выходе отрицательный результат (2). Все сигналы поступают в третий нейрон, ВЫХ с порогом 0,5.
Эту схему нужно проверить. Давайте пройдемся по всем комбинациям.
Комбинация (черный, черный) дает на выходе 0
Если на входе поступает комбинация (0, 0), это (черный, черный), и нейрон во втором слое, Д, получает сигнал 0 с обеих сторон (см. рис. 51). Для Д сигнал 0 меньше, чем порог 1,5, поэтому вершина Д активирует 0. Сигналы, поступающие на нейрон ВЫХ, суммируются (0 + 0 + 0), и на выходе Д дает 0. Это меньше, чем порог 0,5 для нейрона ВЫХ, поэтому он не активируется, и перцептрон на выходе дает 0.