Читать «Наука воскрешения видов. Как клонировать мамонта» онлайн - страница 96

Бет Шапиро

Еще один способ ограничить число нужных правок заключается в том, чтобы вносить только те изменения, которые относятся к генам. Геном имеет огромные размеры, и только малая его часть (к примеру, у человека – около 1,5 %) состоит из генов, кодирующих информацию о белках, в то время как вся остальная часть представлена другой ДНК, не кодирующей ничего. Поскольку гены кодируют информацию о белках, а из белков складывается фенотип, наиболее важные генетические различия между двумя видами, вероятно, лежат непосредственно в последовательностях генов.

Удивительно, но эта стратегия имеет некоторые недостатки. К примеру, нам неизвестно расположение всех генов в геноме мамонта, и для их обнаружения придется строить догадки, основываясь на имеющейся у нас информации (сравнении с более детально изученными геномами), и даже в этом случае нам, возможно, не удастся найти все гены. Кроме того, сосредоточившись только на тех отличиях, которые касаются генов, мы рискуем пропустить важные расхождения в некодирующей части генома, которые могут, к примеру, влиять на то, когда и насколько сильно экспрессируется ген. Различия в экспрессии генов способны привести к появлению разных фенотипов, даже если сама последовательность генов абсолютно одинакова.

Не исключено, что в этом случае нам понадобится внести в геномную последовательность все возможные изменения. Джон Чёрч считает, что вскоре это станет осуществимым на практике. Он считает, что ключ к решению в том, чтобы уменьшить число cгРНК, вырезая и вставляя длинные (очень-очень длинные) фрагменты ДНК. Вместо того чтобы вносить всего несколько изменений при помощи одной cгРНК, мы сможем делать тысячи, если не десятки тысяч, изменений за один раз. Уже сейчас группа Джорджа в состоянии синтезировать нити ДНК длиной в 50 тысяч спаренных оснований. Хотя точность таких длинных синтетических цепочек все еще далека от идеала, технология совершенствуется, в то время как ее стоимость падает. Если бы нам удалось синтезировать весь геном мамонта, скажем, кусками по 100 тысяч пар оснований, то мы могли бы вырезать и вставить весь геном мамонта внутрь генома индийского слона при помощи менее чем 350 cгРНК.

Однако 350 – это все еще очень много, и, исходя из вышеописанной логики, нам понадобилось бы до нелепости огромное число клеток, даже если бы все эксперименты по вырезанию и вставке имели исключительно высокую результативность. Однако логика, изложенная выше, не особенно логична, и она не учитывает то, как мы будем проводить этот эксперимент в реальности. Вместо того чтобы попытать счастья, рассчитывая, что 100 (или 350) маловероятных событий произойдут одновременно, мы будем проводить эксперимент поэтапно, внося несколько изменений и оценивая результат, а затем добавляя еще несколько изменений в те клетки, которые удалось успешно отредактировать, и т. д. Эксперимент все равно будет очень трудным, и на его завершение все равно потребуется много времени, однако при таком подходе результат в принципе достижим.