Читать «Наука воскрешения видов. Как клонировать мамонта» онлайн - страница 81

Бет Шапиро

В случае геномов живых видов лучший способ собрать эти наиболее каверзные участки заключается в том, чтобы секвенировать очень длинные фрагменты ДНК. Под «длинными» я имею в виду участки длиной в тысячи и сотни тысяч спаренных оснований. Сделать это сложно, и на попытки каждый год уходят огромные деньги. К сожалению, длинные цепочки древней ДНК не сохраняются: большинство наших фрагментов содержат менее сотни спаренных оснований, а зачастую и намного меньше. Так что даже если в ближайшие несколько лет у нас произойдет технологический прорыв, позволяющий секвенировать очень длинные участки ДНК, это не принесет особой пользы для возрождения вымерших видов.

Хорошая новость заключается в том, что стоимость секвенирования ДНК продолжает снижаться, а значит, мы можем создавать все больше и больше цепочек ДНК каждого нашего древнего образца, не разоряясь при этом до основания. Кроме того, мы совершенствуем способы выделения ДНК из окаменелостей. Несмотря на то что эти фрагменты будут короткими, их количество может увеличиться. Кроме того, если нам повезет, мы найдем древние образцы (к примеру, сохранившиеся в замерзшей арктической почве), содержащие много сотен спаренных оснований, – хотя крайне маловероятно, чтобы нам удалось обнаружить фрагменты длиной в тысячи или сотни тысяч спаренных оснований. Наконец, совершенствуются вычислительные методы, используемые для соединения фрагментов ДНК при отсутствии близкородственного шаблонного генома, что позволит нам получить более качественные сборки древних геномов все более разнообразных видов.

Правда, однако, заключается в том, что ни один геном млекопитающего еще не был секвенирован полностью. Это касается и человеческого генома, хотя появившиеся более 10 лет назад восторженные заявления определенно указывают на обратное. Правда заключается в том, что отдельные участки человеческого генома до сих пор не были секвенированы, и их нельзя секвенировать ни одним из существующих способов.

Геном состоит из двух компонентов: эухроматина – компонента, содержащего гены, и гетерохроматина – очень плотного компонента, состоящего из повторяющихся фрагментов. В эухроматической части человеческого генома все еще присутствует несколько очень маленьких несеквенированных промежутков, но на них приходится менее 1 % генома. Вторая, более крупная недостающая часть относится к гетерохроматическим участкам. Гетерохроматин составляет около 20 % человеческого генома, и поскольку он содержит множество повторяющихся фрагментов, это наиболее сложная для секвенирования часть человеческого (и вообще любого) генома. Гетерохроматин, вероятно, играет важную роль в регуляции экспрессии генов, направляя сегрегацию хромосом во время деления клетки и определяя, где разные хромосомы должны находиться в ядре. Но поскольку с помощью существующих технологий секвенировать его очень трудно, мы знаем о гетерохроматине намного меньше, чем о эухроматической части генома.