Читать «Наука воскрешения видов. Как клонировать мамонта» онлайн - страница 105

Бет Шапиро

С точки зрения науки возрождения вымерших видов важно, что вероятность появления подобных преград увеличивается вместе с эволюционной дистанцией. Для вымерших видов, не имеющих близких эволюционных родственников, может не найтись подходящих суррогатных матерей. Однако эксперимент с козерогами показал, что такие преграды могут существовать и между видами, находящимися в близком родстве. Редактирование генома способно даже стать причиной появления таких барьеров, если, к примеру, будут прерваны важные взаимодействия между эмбрионом и вынашивающей его самкой. Таким образом, даже те проекты по возрождению вымерших видов, в которых задействованы минимально отредактированные геномы, могут завершиться неудачей из-за непредвиденной несовместимости эмбриона и его суррогатной матери.

Некоторые виды несовместимости могут проявить себя еще до стадии имплантации. К примеру, если яйцеклетка несовместима с соматической клеткой, ядро которой в нее перенесли, то ни одна такая яйцеклетка не превратится в эмбрион, даже если соматические клетки были правильно и полностью перепрограммированы. Подобная проблема может возникнуть, к примеру, когда ядерный геном соматической клетки несовместим с митохондриальным геномом яйцеклетки.

Митохондрии – это органеллы, живущие в цитоплазме клетки, и они не входят в состав ядерного генома. Все митохондрии, расположенные во всех клетках организма, происходят от митохондрии яйцеклетки, из которой развился организм. У митохондрии есть свой собственный геном, кодирующий некоторые белки, необходимые для клеточного дыхания (процесса, в ходе которого клетка перерабатывает кислород и простые углеводы в энергию). Другие белки, участвующие в клеточном дыхании, вырабатываются генами, расположенными в ядре. В случае несовместимости митохондриального и ядерного геномов эти гены также могут оказаться несовместимыми. Если же они не будут работать сообща, обеспечивая клеточное дыхание, это может привести к нарушениям обмена веществ, неврологическим заболеваниям и даже смерти. До сих пор все проекты межвидового клонирования включали только перенос ядерной ДНК, но не митохондриальной.

Исследователи из лаборатории Дэвида Рэнда в Брауновском университете продемонстрировали, как несоответствие ядерной и митохондриальной ДНК может привести к появлению необычных фенотипов у в остальном обычных межвидовых гибридов. Ученые из лаборатории Рэнда создали дрозофил, обладающих ядерной ДНК Drosophila melanogaster и митохондриальной ДНК Drosophila simulans – двух видов мушек, разошедшихся около 5,4 миллиона лет назад. Получившиеся в результате мушки с не соответствующими друг другу геномами имели на спинах ворсинки, были в два раза меньше, чем нормальные мушки, страдали пороками развития, плохо размножались и, чего и стоит ожидать при недостаточной выработке энергии, уставали быстрее мушек с совпадающими геномами.

Несоответствие митохондриального и ядерного геномов может стать проблемой для восстановления вымерших видов, но есть и очевидное решение. Если эти митохондрии не подходят, почему не заменить их митохондриями, соответствующими ядерному геному? Или не отредактировать митохондриальный геном, заменив проблемные участки? Предположительно, это можно осуществить теми же методами редактирования, которые мы собираемся использовать для изменения нуклеотидной последовательности ядерного генома. Ни один из этих подходов нельзя назвать простым и ни один пока нельзя осуществить на практике. Однако в теории они оба реализуемы.