Читать «Сборник статей и публикаций 2012-2013 гг. В двух частях. Часть I» онлайн - страница 7
Фёдор Дмитриевич Шкруднев
Из точки В восставляется перпендикуляр, равный половине АВ. Полученная точка С соединяется линией с точкой А. На полученной линии откладывается отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.
Отрезки золотой пропорции выражаются бесконечной дробью AE = 0.618… если АВ принять за единицу, ВЕ = 0.382… Для практических целей часто используют приближенные значения 0.62 и 0.38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая 38 частям.
Свойства золотого сечения описываются уравнением:
x2 – x – 1 = 0
Решение этого уравнения:
Свойства золотого сечения создали вокруг этого числа романтический ореол таинственности и чуть ли не мистического поколения.
К примеру, в правильной пятиконечной звезде, каждый сегмент делится пересекающим его сегментом в золотом сечении (т. е. отношение синего отрезка к зеленому, красного к синему, зеленого к фиолетовому, равны 1.618).
Второе золотое сечение
Болгарский журнал «Отечество» опубликовал статью Цветана Цекова-Карандаша «О втором золотом сечении», которое вытекает из основного сечения и дает другое отношение 44: 56.
Такая пропорция обнаружена в архитектуре.
Деление осуществляется следующим образом. Отрезок АВ делится в пропорции золотого сечения. Из точки С восставляется перпендикуляр СD. Радиусом АВ находится точка D, которая соединяется линией с точкой А. Прямой угол АСD делится пополам. Из точки С проводится линия до пересечения с линией AD. Точка Е делит отрезок AD в отношении 56: 44.
На рисунке 5 показано положение линии второго золотого сечения. Она находится посередине между линией золотого сечения и средней линией прямоугольника.
Золотой треугольник (пентаграмма)
Для нахождения отрезков золотой пропорции восходящего и нисходящего рядов можно пользоваться пентаграммой.
Для построения пентаграммы необходимо построить правильный пятиугольник. Способ его построения разработал немецкий живописец и график Альбрехт Дюрер. Пусть O – центр окружности, A – точка на окружности и Е – середина отрезка ОА. Перпендикуляр к радиусу ОА, восставленный в точке О, пересекается с окружностью в точке D. Пользуясь циркулем, отложим на диаметре отрезок CE = ED. Длина стороны вписанного в окружность правильного пятиугольника равна DC. Откладываем на окружности отрезки DC и получим пять точек для начертания правильного пятиугольника. Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией.
Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 360 при вершине, а основание, отложенное на боковую сторону, делит ее в пропорции золотого сечения.