Читать «Сейчас. Физика времени» онлайн - страница 29
Ричард А. Мюллер
И это действительно так, только в соответствующих системах отсчета. Но что же тогда происходит, когда один из них возвращается и они встречаются? Они не могут быть оба моложе, когда стоят друг против друга. Феномен времени легче понять, тщательно разбирая эти парадоксы.
Глава 4
Противоречия и парадоксы
Всякая истина проходит через три этапа. На первом ее высмеивают. На втором ей яростно сопротивляются. На третьем принимают как самоочевидную.
Часто приписывается Артуру Шопенгауэру
Комическая опера «Пираты Пензанса»
Открытие Эйнштейном того, что время для движущихся объектов замедляется, имело ошеломляющий резонанс. Обнаружение относительности порядка происхождения событий вызывало беспокойство. А его последующие выводы касательно энергии показались вообще невероятными. Более всего изучение Эйнштейном времени показало, что само время полно неожиданностей и что сделанные ученым выводы влияют не только на наши представления о Вселенной, но и на повседневную жизнь.
Даже если вы соглашаетесь с теорией Эйнштейна, некоторые ее последствия не перестают удивлять. Сформулированные определенным образом, результаты исследований ученого приводят к явным противоречиям, которые могут свести с ума не только студентов, но и некоторых профессоров. Два самых известных и сбивающих людей с толку из таких противоречий получили название
Теория относительности совершенно последовательна, однако для новичка это не всегда очевидно. Явные противоречия и парадоксы в ней основаны на простых ошибках, подобных присутствующим в доказательстве, что 1 = 2. Вы можете подумать, что эти парадоксы мучают только начинающих? Но и у искушенных профессионалов существуют предрассудки и представления, о которых они не догадываются. В результате даже многие профессора путаются, пытаясь объяснить эти парадоксы своим студентам.
Парадокс шеста и сарая
У фермера есть сарай длиной 6 метров с дверью в торце. Свой 12-метровый шест он хотел бы хранить в сарае. Он изучал теорию относительности, поэтому хочет использовать эффект сжатия объектов, чтобы уместить шест внутри сарая. Он разбегается и бежит со скоростью, достаточной, чтобы длина шеста уменьшилась наполовину. Это означает, что гамма-фактор в этом случае будет равен 2. Фермер намеревается закрыть дверь сарая, когда шест окажется внутри. По его мнению, это должно получиться.
Однако как только фермер начнет разбегаться с шестом, он поймет, что в его собственной системе отсчета (когда он бежит), короче становится не шест, а сарай. При этом гамма равна 2. Значит, сарай оказывается длиной всего 3 метра. Собственную систему отсчета бегущего фермера можно считать и системой отсчета шеста, поэтому он сохраняет неизменной длину 12 метров. Конечно, 12-метровый шест не помещается в 3-метровый сарай. Однако в собственной системе отсчета сарая шест в него легко входит. Что же на самом деле произошло? Удалось фермеру поместить шест в сарай или нет? Как ответ зависит от системы отсчета? Ведь шест