Читать «Математический аппарат инженера» онлайн - страница 37
Виталий Петрович Сигорский
2. Постройте граф отношений между сотрудниками Вашего подразделения: а) xi связан по работе с xj; б) xi подчинен xj ( xj, xj ∈ X, где X — множество сотрудников подразделения). Охарактеризуйте полученные графы: что в них общего и чем они различаются? В каких случаях может получиться несвязный граф?
3. Постройте граф района, в котором Вы живете, отметив направления ребер для улиц с односторонним движением. Преобразуйте полученный граф в орграф. Можно ли проложить путь между любыми двумя вершинами, не нарушая установленных направлений движения и не выезжая за пределы района?
4. На графе, построенном в задаче 3, укажите (хотя бы приблизительно) расстояния между смежными вершинами. Найдите кратчайшие маршруты, соединяющие интересующие Вас вершины.
5. Существует ли эйлеров цикл для графа, построенного в задаче 3, и что он означает? Попытайтесь найти для этого графа гамильтонов цикл (если он существует).
6. Пометьте вершины и ребра графа (см. рис. 14, а) буквами или цифрами и выполните следующие упражнения:
а) Запишите все ребра как неупорядоченные пары вершин и отметьте кратные ребра и петли.
б) Определите степени всех вершин, а также суммы степеней всех вершин и всех нечетные вершин графа (что можно сказать об этих суммах?).
в) Является ли граф однородным (если нет, то добавлением ребер преобразуйте его в однородный)?
г) К какому типу относится рассматриваемый граф (простой, мультиграф, псевдограф)?
д) Запишите матрицу смежности графа.
7. Пометьте вершины и ребра орграфа (см. рис. 8, а) буквами или цифрами и выполните следующие упражнения:
а) Запишите все ребра как неупорядоченные пары вершин и отметьте параллельные ребра.
б) Определите положительные и отрицательные степени всех вершин и соответственно их суммы (что можно сказать об этих суммах?).
в) Запишите матрицу инцидентности графа.
8. Докажите, что кубический граф имеет четное число вершин. Обобщается ли свойство четности вершин на однородные графы высших степеней?
9. Постройте графы, соответствующие следующим матрицам смежности:
- 59 -
Охарактеризуйте полученные графы и запишите для них матрицы инцидентности.
10. Расположите на плоскости четыре вершины, как в графе на рис. 11, а, но обозначения вершин v2 и v3 взаимно переставьте. На множестве обозначенных таким образом вершин постройте граф, изоморфный исходному.
11. Выполните следующие упражнения с графом (см. рис. 11, а):
а) Найдите все ориентированные маршруты от вершины а к вершине е.
б) Найдите все пути и простые пути от вершины а к вершине е.
в) Определите все простые контуры графа.
13. В орграфе (см. рис. 8, а) измените направления дуг таким образом, чтобы он преобразовался в ациклический граф. Постарайтесь найти общее правило такого преобразования.
14. Для графа (см. рис. 12) простойте:
а) часть, состоящую из четырех вершин и пяти ребер;
б) суграф с четырьмя, пятью и шестью ребрами.
15. Два графа G' = (V', E') и G" = (V", E") называются непересекающимися, если V' ∩ V" = ∅ и E' ∩ E" = ∅. Постройте непересекающиеся подграфы графа рис. 12, содержащие по три вершины.