Читать «Статистика и котики» онлайн - страница 3
Владимир Савельев
К несчастью, дисперсия и среднеквадратическое отклонение так же неустойчивы к выбросам, как и среднее арифметическое.
Среднее значение и среднеквадратическое отклонение очень часто совместно используются для описания той или иной группы котиков. Дело в том, что, как правило, большинство (а именно около 68%) котиков находится в пределе одного среднеквадратического отклонения от среднего. Эти котики обладают так называемым
Такой график называется
Таким образом, зная всего два показателя, вы можете с достаточной долей уверенности сказать, как выглядит типичный котик, насколько разнообразными являются котики в целом и в каком диапазоне лежит норма по тому или иному признаку.
НЕМАЛОВАЖНО ЗНАТЬ!
Выборка, генеральная совокупность и два вида дисперсии
Чаще всего нас, как исследователей, интересуют все котики без исключения. Статистики называют этих котиков
Очень важно, чтобы выборка была максимально похожа на генеральную совокупность. Степень такой похожести называется
Необходимо запомнить, что существует две формулы дисперсии: одна для генеральной совокупности, другая — для выборки. В знаменателе первой всегда стоит точное количество котиков, а у второй — ровно на одного котика меньше.
Корень из дисперсии генеральной совокупности, как уже было сказано, называется
Однако не будет большой ошибкой, если вы будете пользоваться терминами
Глава 2.
Картинки с котиками
или средства визуализации данных
В предыдущей главе мы говорили про показатели, которые помогают определить, какой размер является для котиков типичным и насколько он бывает разнообразным. Но когда нам требуется получить более полные и зрительно осязаемые представления о котиках, мы можем прибегнуть к так называемым
Первая группа средств показывает, сколько котиков обладает тем или иным размером. Для их использования необходимо предварительно построить так называемые
Это количество, кстати, и называется