Читать «Из истории растительных династий» онлайн - страница 16
Сергей Викторович Мейен
Рис. 10. Кутикула (эпидерма)' различных ископаемых растений копаемых при увеличении в 200 раз
Первый опыт получился удачным. Теперь надо было проделать с другими листьями то же, что природа сделала с экземплярами Борнеманна. Здесь и пришла на помощь химия. Нужно было растворить обугленную часть листа и не повредить при этом кутикулу. К тому времени, т. е. ко второй половине прошлого века химики уже научились растворять уголь. Его подвергали глубокому окислению, а затем образовавшиеся соединения с помощью щелочи переводили в раствор. Давайте теперь мысленно проследим путь ископаемого листа от куска камня до столика микроскопа.
Рис. 11. Строение устьица в плане и поперечном разрезе
Фитолейма в тигле
Итак, на столе лежит образец, а на нем почерневший, обуглившийся, спресованный остаток листа. Все то, что остается от листа, наш известный палеоботаник А. Н. Криштофович назвал "фитолеймой". По-гречески "фитон" - растение, а "лейма" - остаток. Обрабатывать всю фито-лейму кислотами и щелочами нет нужды. Достаточно взять кусочки ее из разных мест. Иногда для этого хватает иглы и пинцета, иногда приходится обрабатывать фитолейму кислотой. Черный или темно-бурый ломтик ложится на дно тигля вместе с кристалликами бертолетовой соли и несколькими каплями азотной кислоты. Такая окислительная среда называется "смесь Шульце", палеоботаники применяют ее уже без малого сто лет. В смеси Шульце фитолейма пролежит от получаса до нескольких дней. Все зависит от того, насколько изменилась она с того времени, как была погребена в осадке. Наконец, она стала рыжеть и просвечивать. После ванны в дистиллированной воде фитолейма заливается нашатырным спиртом (или другой щелочью) и начинает шевелиться. Это растворяется уголь, зажатый между кутикулами обеих сторон листа. Под микроскопом видно, как бурые клубы выползают из щели и двигают фитолейму.
Проходит немного времени, и вот в потемневшем растворе поплыли прозрачные пленки. Это и есть лоскутки долгожданной кутикулы. Пипеткой или иглой их надо перенести на предметное стекло, расправить, капнуть сверху горячим раствором желатины в глицерине и накрыть покровным стеклом. Можно смотреть в микроскоп.
Все идет так гладко, конечно, лишь на бумаге. Обычно же приходится проявлять большую или меньшую долю терпения. То фитолейма не желает покидать камень, то она оказывается грязной, и ее приходится травить плавиковой кислотой, то кусочки кутикулы получаются такими крохотными, что их еле заставишь переселиться на предметное стекло. Но если все идет идеально, в день можно успеть сделать два-три десятка препаратов.
Теперь за микроскоп
Трудно сказать, с чем чаще встречается палеоботаник, когда он, наконец, садится за микроскоп, - с новыми вопросами или с долгожданными ответами. Прежде, чем дать ответы, эпидермалъный метод требует очень многого. Нужно разобраться в сложном орнаменте клеток, устьиц и бугорков на кутикуле, что не всегда просто. Надо проследить, как меняется клеточное строение от середины листа к краю и от основания к верхушке. Особенно трудно разобраться в структуре устьиц (бывали случаи, когда исследователи принимали за устьица клетки, сидевшие в основании опавших волосков). Затем предстоит перебрать литературу по изучаемой группе растений, посмотреть, какие препараты получились у предшественников. Литература по структуре эпидермы ископаемых растений уже достаточно велика (сотни названий), но не всегда хороши иллюстрации и полны описания. Сидит палеоботаник, смотрит на препарат, на картинку в книге, читает описание и мучается: правильно ли он понял характерные признаки вида или рода? А если что-то не сходится, то в чем дело? Может быть, ошибка? Тогда у кого? Может быть, сам ошибся, может быть предшественник, а может быть просто дело в том, что попались разные растения. Впрочем, это уже трудности, свойственные любой работе по систематике живых существ, и эпидермальный метод здесь не отличается от любого другого.