Читать «Величайшие математические задачи» онлайн

Иэн Стюарт

Иэн Стюарт

Величайшие математические задачи

Переводчик Наталья Лисова

Редактор Наталья Нарциссова

Руководитель проекта И. Серёгина

Корректоры Е. Аксёнова, М. Миловидова

Компьютерная верстка А. Фоминов

Дизайн обложки О. Сидоренко

* * *

Мы должны знать — мы будем знать!

Давид Гильберт,

речь о математических проблемах, произнесенная в 1930 г. по случаю присвоения Гильберту звания Почетного гражданина Кёнигсберга

Предисловие

Математика — обширная, непрерывно растущая и столь же непрерывно меняющаяся область знания. Среди бесчисленных вопросов, которыми задаются математики и на которые они по большей части находят ответы, есть немало и таких, которые стоят особняком и возвышаются над всеми прочими, словно горные пики — над предгорьями. Это действительно сложные проблемы, и любой математик отдал бы правую руку за возможность первым найти решение одной из таких масштабных задач. Некоторые из них оставались нерешенными десятилетиями, иные — столетиями, а есть и такие, что не поддавались усилиям математиков несколько тысячелетий. И до сих пор существуют проблемы, которые ученым только предстоит разрешить. Так, последняя теорема Ферма оставалась для математиков камнем преткновения 350 лет, пока Эндрю Уайлс не доказал ее, потратив на эту работу семь лет жизни. Гипотеза Пуанкаре была неприступна больше 100 лет, пока эксцентричный гений Григорий Перельман не нашел доказательство и не превратил ее в теорему (отказавшись при этом от всяких академических почестей и премии в миллион долларов за эту работу). А гипотеза Римана и сегодня, через 150 лет после того, как была сформулирована, остается нерешенной.

Книга «Великие математические задачи» рассказывает о некоторых крупнейших математических проблемах, работа над которыми открыла перед научной мыслью совершенно новые направления и возможности. Читатель познакомится с истоками этих задач, узнает, почему они так важны и какое место занимают в общем контексте математики и естественных наук. В книге представлены как решенные, так и нерешенные задачи из самых разных периодов истории математики. По существу, рассказ охватывает две с лишним тысячи лет развития науки, однако основное внимание в книге сосредоточено на вопросах, которые либо до сих пор остаются нерешенными, либо были решены относительно недавно, в последние полвека.

Фундаментальная цель математики — раскрывать внутреннюю простоту сложных на первый взгляд вопросов. Это заявление может показаться неочевидным и даже странным, поскольку математическое представление о «простоте» опирается на множество сложных технических концепций. Но важная особенность этой книги заключается именно в том, что акцент в ней сделан на глубинную простоту, а сложности мы стараемся обойти стороной или объясняем простыми словами.

Математика — более молодая и многообразная наука, чем многие думают. По приблизительным оценкам в мире сегодня живет около 100 000 математиков-исследователей, которые каждый год выпускают более двух миллионов страниц новых математических изысканий. Это не «новые числа», поисками которых математики не занимаются вообще. И не «новые величины», подобные уже известным, только больше, хотя мы действительно иногда работаем с достаточно большими величинами. Так, про одно недавнее алгебраическое исследование, проведенное командой из 25 математиков, какой-то шутник сказал: «Расчет размером с Манхэттен». Но и это не совсем верно — ребята поскромничали. Размером с Манхэттен у них был ответ, а расчет занимал гораздо больше места. Впечатляет, не правда ли? Но главное в математических исследованиях все-таки качество, а не размер и даже не количество. Расчет размером с Манхэттен, о котором шла речь, котируется в обоих отношениях, поскольку дает важную информацию о группе симметрии, играющей существенную роль в математике и, судя по всему, в квантовой физике. Блестящие математические рассуждения и выводы могут уложиться в одну строчку — а могут занять целую энциклопедию. Все зависит от существа и сложности задачи.