Читать «Рассказы о математиках» онлайн - страница 47

Василий Дмитриевич Чистяков

— Карл, ты, наверное, ошибся! Нельзя в столь короткое время решить столь трудную задачу.

Уверенный в правильности своего решения, Гаусс смело ответил учителю:

— Извините, господин учитель! Я правильно решил задачу.

— Посмотрим, насколько правильно. А если неправильно? — И он угрожающе хлопнул хлыстом по своей ноге…

Каково же было изумление учителя, когда при проверке оказалось, что Гаусс решил задачу совершенно правильно, причем само решение отличалось чрезвычайной простотой и остроумием.

— Карл, расскажи классу, как ты решил задачу, — обратился к нему учитель.

— Заданная задача, если внимательно всмотреться в нее, очень проста. Я заметил, что числа данного ряда чисел, стоящие на одинаковом расстоянии от начала и конца его, имеют одинаковую сумму. Пользуясь этим свойством, я складывал попарно:

100+1, 99+2, 98+3 и т. д.,

что давало каждый раз в сумме 101. Но таких пар очевидно 50, следовательно, вся сумма 101×50 = 5050.

Бюттнер в этот день был весьма доволен маленьким Гауссом. Свой гнев он обрушил на тех учащихся, которые или совсем не решили задачу, или решили ее неправильно. Говорят, что на этом уроке хлыст Бюттнера поработал особенно много.

Помощником Бюттнера в народной школе был юноша Бартельс. В его обязанности входила очинка перьев и помощь отстающим учащимся. Все свободное время Бартельс отдавал занятиям по математике. Впоследствии он стал видным профессором. Одно время работал в Казанском университете и был любимым учителем Н. И. Лобачевского.

Бартельс обратил внимание на десятилетнего Гаусса и пригласил заниматься математикой вместе с ним. Книги по математике на свой скудный заработок покупал Бартельс. По этим книгам он знакомил Гаусса со сложными вопросами математики и приохотил его к самостоятельной работе.

Уже тогда у Гаусса зародилась мысль о выборе математической специальности как своей будущей профессии. В гимназические годы он успешно изучал древние языки и мечтал быть философом. Однако математика одержала верх.

Окончательное решение стать математиком у Гаусса сложилось на 19-м году жизни, когда он целый год проучился в Геттингенском университете и сделал в течение этого года весьма важное открытие. Решив уравнение х17−1 = 0, он дал построение правильного 17-угольника при помощи циркуля и линейки. Этому открытию Гаусс придавал весьма большое значение и дорожил им. Недаром правильный 17-угольник, вписанный в круг, он завещал выгравировать на своем могильном памятнике, что и было выполнено после его смерти.

Свою вычислительную технику Гаусс совершенствовал всю жизнь. В проводимых вычислениях он был непревзойденным виртуозом. В сложнейших расчетах он почти никогда не ошибался, так как полученные результаты проверял различными способами. По признанию Гаусса, большая вычислительная работа его не утомляла, а, наоборот, доставляла удовольствие.

Гаусс обладал феноменальной памятью. Легкость, с которой он производил вычисления, была всегда предметом всеобщего восхищения и некоторой зависти. Запись, которой пользовался Гаусс при громоздких вычислениях, всегда отличалась большой аккуратностью и красотой.