Читать «Рассказы о математиках» онлайн - страница 15

Василий Дмитриевич Чистяков

Свой замечательный трактат по алгебре ал-Хорезми написал также по указанию ал-Мамуны около 830 года как учебное руководство для юношества. В предисловии к своей книге, отзываясь с похвалой о своем покровителе ал-Мамуне, ал-Хорезми отмечает, что задался целью написать краткое сочинение о вычислениях при посредстве «восстановления» (ал-джебр) и «сопоставления» (вал-мукабала). По его словам, он ограничился изложением того, что является наиболее легким и понятным в арифметике, с чем люди сталкиваются на каждом шагу в различных денежных сделках, в торговых делах, в вопросах межевания земли и т. д. Таким образом, алгебраическое сочинение ал-Хорезми преследовало цель элементарного изложения важных сведений, носящих прикладной характер.

Сочинение преимущественно посвящается решению уравнений первой и второй степени. В нем автор рассматривает «шесть случаев»:

1) x2=ах; 4) x2+a=b;

2) x2=а; 5) x2+a = bx;

3) ах=b; 6) ax+b=х2.

Все эти случаи ал-Хорезми рассматривает на числовых примерах. Для решения подобных уравнений он предложил метод «восстановления» (ал-джебр) и «сопоставления» (вал-мукабала). Например, уравнение

х2−5х−12 = х−14

посредством операции «ал-джебр» принимает вид

x2+14 = х+5х+12,

а это уравнение после операции «вал-мукабала» приводится к виду

а2+2=6х.

Следовательно, при помощи двух указанных выше операций данное уравнение сводится к установленной «нормальной» форме, в данном случае к пятой, т. е. к виду

x2+a=bx

Для решения этого уравнения у ал-Хорезми имеется правило, выраженное в словесной форме, которое в современном обозначении сводится к формуле

Для решения квадратных уравнений ал-Хорезми, по-видимому, пользовался двумя приемами — арифметическим и геометрическим. Геометрический прием основан на приравнивании площадей, выражающих геометрическую интерпретацию заданного уравнения. Так, чтобы решить уравнение х2+ах=Ь, рассматривался квадрат, состоящий из 4 прямоугольников и 5 квадратов (см. рисунок на стр. 52). Обозначив через S площадь исходного квадрата, получим

С другой стороны,

Приравнивая

правые части, получим

Откуда

Один персидский математик методы «ал-джебр» и «вал-мукабала» даже изложил стихами.

Ал-джебр

При решении уравненья, Если в части одной, Безразлично какой, Встретится член отрицательный, Мы к обеим частям, С этим членом сличив, Равный член придадим, Только с знаком другим, — И найдем результат, нам желательный!

Вал-мукабала

Дальше смотрим в уравненье, Можно ль сделать приведенье, Если члены есть подобны, Сопоставить их удобно. Вычитая равный член из них, К одному приводим их.

Что касается арифметического трактата ал-Хорезми, то он явился источником распространения в странах Ближнего и Среднего Востока и Европы десятичной позиционной системы счисления, заимствованной у индийских математиков.