Читать «Черные дыры и вселенная» онлайн - страница 16

Игорь Дмитриевич Новиков

Познакомимся с некоторыми важнейшими особенностями движения тел в поле тяготения черной дыры.

По теории Ньютона, если скорость тела меньше второй космической, то оно движется по эллипсу около центрального тела — тяготеющего центра (ТЦ). У эллипса есть ближайшая к ТЦ точка (периастр) и наиболее удаленная (апоастр). По теории Эйнштейна, в случае движения тела со скоростью, меньшей второй космической, траектория его также имеет периастр и апоастр, но она уже не эллипс; оно движется по незамкнутой орбите, то приближаясь к черной дыре, то снова удаляясь от нее. Траектория вся целиком лежит в одной плоскости, но вблизи черной дыры она может выглядеть весьма причудливо, как, например, показано на рисунке . Если же она лежит достаточно далеко, то вид ее представляет собой медленно поворачивающийся в пространстве эллипс. Такой медленный поворот эллиптической орбиты Меркурия на 43 угловых секунды в столетие послужил первым подтверждением правильности теории тяготения Эйнштейна.

Очень интересно рассмотреть простейшее периодическое движение тела в поле черной дыры по круговой орбите. По теории Ньютона, движение по кругу возможно на любом расстоянии от ТЦ. Из теории Эйнштейна следует, что это не так. Чем ближе к ТЦ, тем больше скорость движущегося по окружности тела. На окружности, удаленной на полтора гравитационных радиуса, скорость обращающегося тела достигает световой. На еще более близкой к черной дыре окружности движение его вообще невозможно, ибо для этого ему потребовалась бы скорость больше скорости света.

Но, оказывается, в реальной ситуации движение по окружности вокруг черной дыры невозможно и на больших расстояниях, начиная с трех гравитационных радиусов, когда скорость движения составляет всего половину скорости света. В чем же причина?

Дело в том, что на расстояниях меньше трех гравитационных радиусов движение по окружности неустойчиво. Малейшее возмущение, сколько угодно малый толчок заставят вращающееся тело уйти с орбиты и либо упасть в черную дыру, либо улететь в пространство (ничего похожего не предусматривает ньютоновская «Небесная механика»). Но, пожалуй, самое интересное и необычное в новой небесной механике — это возможность гравитационного захвата черной дырой тел, прилетающих из космоса.

Напомним, что в ньютоновской механике всякое тело, прилетающее к тяготеющей массе из космоса, описывает вокруг нее параболу или гиперболу и (если не «стукнется» о поверхность тяготеющей массы) снова улетает в космос — гравитационный захват невозможен. Иначе обстоит дело в поле тяготения черной дыры. Конечно, если прилетающее тело движется на большом расстоянии от черной дыры (на расстоянии десятков гравитационных радиусов и больше), там, где поле тяготения слабо и справедливы законы механики Ньютона, то оно движется почти точно по параболе или гиперболе. Но если оно пролетает достаточно близко от дыры, то его орбита совсем не похожа на гиперболу или параболу. В случае, если оно вдали от черной дыры имеет скорость много меньше световой и его орбита подходит близко к окружности с радиусом, равным двум гравитационным радиусам, то оно обернется вокруг черной дыры несколько раз, прежде чем снова улетит в космос. Этот случай изображен на рисунке .