Читать «Неизвестный алмаз. «Артефакты» технологии» онлайн - страница 4

Владимир Юрьевич Карасев

В нашем случае движение шаржированного алмазным абразивом (10/7 мкм) инструмента является двухосевым. Инструмент вращается вокруг своей оси и перемещается параллельно вокруг некой заданной оси. В результате мы имеем независимое двухосевое вращение и перемещение инструмента, которое и обеспечивает сложное циклическое движение зерен абразива относительно обрабатываемой поверхности алмаза, описываемое уравнениями второго порядка [7]. Диаметр инструмента и скорость его вращения задают требуемую линейную скорость движения абразивного зерна, взаимодействие которого с поверхностью кристалла в этом случае, как правило, не превышает предел ее упругости, что сводит к минимуму образование микросколов по моделям Герца и Ауэрбаха [8].

Рассмотрим принцип воздействия инструмента на алмаз немного подробнее.

В традиционной технологии обработки алмазов в бриллианты одним из определяющих моментов является обеспечение стабильности оборотов вращающегося инструмента. В этом случае линейная скорость каждого зерна абразива в точке касания инструмента с алмазом (Vst) является величиной постоянной (рис. 1.1). На этом рисунке горизонтальная прямая линия – линейная скорость среднестатистического зерна абразива при использовании стандартной технологии (Vst). Волнистая линия – характер изменения скорости аналогичного зерна абразива относительно обрабатываемой поверхности алмаза при применении квантово-волнового метода обработки V = V2V1).

В нашем случае обрабатывающий инструмент имеет одну ось вращения α (с циклической частотой α) вокруг своего геометрического центра и одновременно совершает независимое эксцентричное перемещение как целое тело вокруг другой, но неподвижной оси ß (с циклической частотой ß). Общий кинематический принцип такого комбинированного двухосевого движения был реализован ранее в работе [9]. Расстояние между подвижной а и неподвижной ß осями вращения (rа) является аппаратурным фактором и выбирается в соответствии с используемым алгоритмом обработки.

Важно заметить, что параметр ΔV (см. рис. 1.1) как приращение линейной скорости движения инструмента относительно обрабатываемой поверхности алмаза есть величина постоянная в любой точке контакта обрабатывающего инструмента с кристаллом и зависит только от rа. Следовательно, и тангенциальное ускорение всех зерен, участвующих в процессе генерации возмущающих волн в обрабатываемом алмазе, будет также инвариантно относительно координат контакта.

Рис. 1.1. Графическое отображение скоростей движения инструмента как функции времени t

В этом суть одного из многих алгоритмов воздействия. В этих алгоритмах также предусмотрена возможность задаваемых вращательного и возвратно-поступательного перемещений кристалла алмаза относительно инструмента.

Критерий пространственного постоянства ΔV является определяющим фактором при создании когерентного волнового поля упругих деформаций в объеме алмаза. Когерентность – согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов. Волны называются когерентными, если разность их фаз остается постоянной во времени.