Читать «Симпсоны и их математические секреты» онлайн - страница 14
Саймон Сингх
Для того чтобы проверить свою гипотезу, Лиза наносит немного пойндекстрозы на пиджак грозного бывшего боксера Дредерика Тейтума, пришедшего в ее школу. Как и следовало ожидать, феромон притягивает школьного хулигана Нельсона Манца. И хотя Нельсон понимает, что нападать на бывшего боксера абсолютно бессмысленно, он не может сопротивляться воздействию пойндекстрозы и даже вытягивает у Тейтума трусы.
Взволнованная своим открытием, Лиза решает представить отчет о работе «Воздушные феромоны и агрессия хулиганов» на конференции «12-я ежегодная научная штука», которую ведет любимец обитателей Спрингфилда, рассеянный профессор Джон Нерделбаум Фринк-младший. Фринк пытается представить Лизу, но атмосфера на конференции настолько накалена, а ее участники так возбуждены, что ему трудно призвать их к порядку. В конце концов Фринк в отчаянии восклицает: «Ученые, ученые! Прошу, прошу порядка! К порядку, смотреть вперед, руки сложить, слушать внимательно.
Шум внезапно прекращается. Идея профессора Фринка сработала, поскольку он совершенно правильно предположил, что заявление о точном значении числа π так поразит присутствующих в зале, что они потеряют дар речи. Как смеет кто бы то ни было заменять тройкой число 3,141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513… после тысячелетних попыток определить его значение с невероятной точностью!
Эта сцена перекликается с лимериком, написанным историком, профессором колледжа Колорадо Харви Картером (1904–1994):
Однако возмутительное заявление профессора Фринка основывалось не на странном лимерике Картера. Эл Джин рассказал о том, что он предложил фразу
Законопроект о числе π (официальное название – «Законопроект № 246»), принятый в нижней палате штата Индиана, был детищем Эдвина Гудвина, врача из города Солитьюд, расположенного в юго-западной части штата. Гудвин обратился к законодательному собранию штата с предложением принять закон, в основу которого было положено его решение задачи, известной как «квадратура круга» (древняя задача, не имеющая решения, что было доказано в 1882 году). Сложные и противоречивые объяснения Гудвина содержали следующую строку, касающуюся диаметра круга: