Читать «Занимательная электроника» онлайн - страница 82

Юрий Всеволодович Ревич

□ допустимое напряжение коллектор-эмиттер (сток-исток);

□ допустимое напряжение коллектор-база (сток-затвор);

□ допустимое обратное напряжение база-эмиттер и др.

Самыми критичными являются опять же три: допустимый ток коллектора, допустимая мощность на коллекторе и допустимое напряжение коллектор-эмиттер. Допустимое обратное напряжение база-эмиттер (т. е. отрицательное напряжение на базе при запертом транзисторе) для большинства типов кремниевых транзисторов, независимо от их мощности, составляет, увы, всего 5 В. На самом деле большинство транзисторов в импульсе выдерживает много больше, но лучше не экспериментировать. Допустимое напряжение коллектор-база, как правило, примерно равно допустимому напряжению коллектор-эмиттер, которое для обычных типов маломощных транзисторов составляет несколько десятков вольт (хотя есть и экстремальные типы, которые могут коммутировать и сотни вольт). Чаще всего в пределах одного типа разные буквы означают разброс в допустимых напряжениях (и/или в коэффициентах усиления β): так, для КТ815А допустимое постоянное напряжение коллектор-эмиттер составляет 40 В, а для КТ815Г — 100 В.

Предельно допустимая мощность на коллекторе (то же самое справедливо для диодов) обычно определяется типом корпуса — один и тот же транзистор, помещенный в разные корпуса, может обеспечить разную выделяемую мощность. Критерием тут служит температура самого кристалла, которую померить ох как непросто!

Для ориентировки можно указать, что транзисторы (и другие приборы), помещенные в распространенный корпус ТО-220 (корпуса транзисторов показаны на рис. 6.11), могут без дополнительного радиатора рассеивать мощность до 1–2 Вт, а маломощные типа КТ3102 (корпус типа ТО-92) — до 0,5 Вт. С радиатором возможности сильно возрастают — корпус типа ТО-220 может рассеять до 60 Вт тепла без вреда для кристалла! Образцом тут могут служить микропроцессоры — какой-нибудь Pentium 4 на частоте 3 ГГц потребляет порядка 70–80 Вт мощности, но с внешним радиатором, дополнительно охлаждаемым специальным вентилятором, работает без вреда для многих миллионов транзисторов, которые он содержит. (Расчетом радиатора мы будем заниматься в главе 9.)

Рис. 6.11. Различные типы корпусов транзисторов

В любом случае следует выбирать минимально необходимый по мощности прибор — не только в целях экономии денег и места на печатной плате, но и потому, что чем меньше диод или транзистор, тем лучше у него остальные второстепенные характеристики: быстродействие, уровень собственных шумов, токи утечки и т. д. Но, как и в других случаях, запас обязательно следует иметь: если вы выберете для работы в цепи с напряжением 100 В и с токами до 1,5 А транзистор КТ815Г — это будет формально правильно, но я бы — для надежности — выбрал сюда что-нибудь помощнее.

* * *

Подробности

Есть правило, касающееся любых компонентов, не только диодов или транзисторов: из всех предельных параметров максимально допустимого значения в процессе работы может достигать только один, остальные должны оставаться как можно ниже (для транзисторов даже приводятся специальные графики, называемые областью безопасной работы). Так, если вы выбрали упомянутый КТ815Г для работы в цепи с напряжениями до 100 В — пусть предельные токи через него заведомо никогда не смогут превысить 0,5 А. Это будет правильно! Представьте себе йога, который тренирован для пребывания голым на холоде в минус 30° в течение часа, спокойно ходит по раскаленным угольям, выдерживает давление на грудную клетку большегрузного автомобиля в 10 тонн и при этом ломает кирпичи одним ударом ладони. А теперь заставьте его проделать все это одновременно! Конечно, не исключено, что он выдержит, — ну, а как нет?