Читать «Занимательная электроника» онлайн - страница 45

Юрий Всеволодович Ревич

А вот от сопротивления мощность зависит линейно — если вы при том же источнике питания уменьшите сопротивление вдвое, то мощность в нагрузке также возрастет только вдвое. Это именно так, хотя факт, что согласно закону Ома ток в цепи увеличится также вдвое, мог бы нас привести к ошибочному выводу, будто в этом случае выделяющаяся мощность возрастет вчетверо. Но если вы внимательно проанализируете формулировку закона Джоуля — Ленца, то поймете, где здесь зарыта собака — ведь в произведении U·I увеличивается только ток, а напряжение остается тем же самым.

В электрических цепях энергия выступает чаще всего в роли тепловой энергии, поэтому электрическая мощность в подавляющем большинстве случаев физически означает просто количество тепла, которое выделяется в цепи (если в ней нет электромоторов или, скажем, источников света). Вот и ответ на вопрос, который мог бы задать пытливый читатель еще при чтении первой главы, — куда расходуется энергия источника питания, гоняющего по цепи ток? Ответ — на нагревание сопротивлений нагрузки, включенных в сеть. И даже если нагрузка представляет собой, скажем, источник света (лампочку или светодиод), то большая часть энергии все равно уходит в тепло — к. п. д. лампы накаливания (т. е. та часть энергии, которая превращается в свет), как известно, не превышает единиц процентов. У светодиодов эта величина значительно выше, но и там огромная часть энергии уходит в тепло. Кстати, из всего этого следует, например, что ваш компьютер последней модели, который потребляет сотни ватт энергии, также всю эту энергию переводит в тепло — за исключением исчезающе малой ее части, которая расходуется на свечение экрана и вращение жесткого диска (впрочем, энергия вращения тоже в конце концов переходит в тепло). Такова цена информации!

Если мощность, выделяемая на нагрузке, превысит некоторую допустимую величину, то нагрузка просто сгорит. Поэтому различные типы нагрузок характеризуют предельно допустимой мощностью, которую они могут рассеять без необратимых последствий. Подробнее об этом для разных видов нагрузок мы поговорим в дальнейшем, а сейчас зададимся вопросом — что означает мощность в цепях переменного тока?

Что показывал вольтметр?

Для того чтобы понять смысл этого вопроса, давайте внимательно рассмотрим график синусоидального напряжения на рис. 4.2. В каждый момент времени величина напряжения в нем разная — соответственно, будет разной и величина тока через резистор нагрузки, на который мы подадим такое напряжение. В моменты времени, обозначенные T/2 и Т (т. е. кратные половине периода нашего колебания), напряжение на нагрузке вообще будет равно нулю (ток через резистор не течет), а в промежутках между ними — меняется вплоть до некоей максимальной величины, равной амплитудному значению А. Точно так же будет меняться ток через нагрузку, а следовательно, и выделяемая мощность (которая от направления тока не зависит — физики скажут, что мощность есть величина скалярная, а не векторная). Но процесс выделения тепла крайне инерционен — даже такой маленький предмет, как волосок лампочки накаливания, за 1/100 секунды, которые проходят между пиками напряжения в промышленной сети частотой 50 Гц, не успевает заметно остыть. Поэтому нас чаще всего интересует именно средняя мощность за большой промежуток времени. Чему она будет равна?