Читать «Занимательная электроника» онлайн - страница 119

Юрий Всеволодович Ревич

Учтите, что закон трансформации (1) справедлив для всех видов трансформаторов, а вот все остальные соотношения, за исключением разве что (4), годятся только для расчета сетевых трансформаторов, работающих на частоте 50 Гц. Ни для каких других трансформаторов (согласующих с ферритовыми сердечниками) эта методика не действует.

Ну, а теперь перейдем к более интересным вещам.

Простейший нестабилизированный однополярный источник питания

Схема простейшего источника питания приведена на рис. 9.6. Именно по такой схеме устроены почти все распространенные ныне блоки питания, встроенные в сетевую вилку. Иногда в них вторичная обмотка имеет несколько отводов и присутствует ползунковый переключатель, который коммутирует эти отводы, меняя выходное напряжение. Так как эти блоки весьма дешевы, то в случае, когда вам не требуется большой мощности, спокойно можно покупать такой блок, разбирать его и встраивать в вашу аппаратуру (или даже не встраивать — хотя, на мой вкус, громоздкие надолбы на розетках отнюдь не украшают интерьер, все время хотят вывалиться и к тому же не во всякую розетку влезают). Нужно только обратить внимание на допустимый ток нагрузки, который указан на корпусе блока. Что касается номинального напряжения, то этот вопрос мы сейчас рассмотрим.

Рис. 9.6. Простейший нестабилизированный однополярный источник питания

Как работает эта схема? Здесь переменный синусоидальный ток со вторичной обмотки трансформатора (II) подается на конструкцию из четырех диодов, которая называется диодным мостом и представляет собой простейший двухполупериодный выпрямитель (есть и другие способы двухполупериодного выпрямления — см; далее рис. 9.14 и пояснения к нему). В мосте могут быть использованы любые типы выпрямительных диодов, лишь бы их предельно допустимый ток был не меньше необходимого (для указанных на схеме диодов 1N4001 это 1 А), а предельно допустимое напряжение — не меньше половины амплитудного значения входного переменного напряжения (т. к. в данном случае это всего 7 В, то здесь этому требованию удовлетворяют вообще все выпрямительные диоды на свете). Такие мосты выпускаются уже в сборе, в одном корпусе, на котором иногда даже нарисовано, куда подключать переменное и откуда снимать постоянное напряжения. Их, конечно, тоже можно и нужно использовать.

Проследим за работой моста. Предположим, что на верхнем по схеме выводе вторичной обмотки в данный момент переменное напряжение, поступающее с обмотки, больше, чем на нижнем. Тогда ток в нагрузку (она обозначена пунктиром) потечет через правый верхний диод моста, а возвратится в обмотку через левый нижний. Полярность на нагрузке, как видим, соблюдается. В следующем полупериоде, когда на верхнем выводе обмотки напряжение меньше, чем на нижнем, ток через нагрузку потечет, наоборот, через левый верхний диод и возвратится через правый нижний. Как видим, полярность опять соблюдается.

Отсюда и название такого выпрямителя — двухполупериодный, т. е. он работает во время обоих полупериодов переменного тока. Форма напряжения на выходе такого моста (в отсутствие конденсатора) соответствует пульсирующему напряжению, показанному на рис. 4.5, а. Естественно, такое пульсирующее напряжение нас не устраивает — мы хотим иметь настоящее постоянное напряжение без пульсаций, потому в схеме присутствует сглаживающий (фильтрующий) конденсатор, который вместе с выходным активным сопротивлением трансформатора и сопротивлением диодов представляет собой не что иное, как известный нам по главе 5 интегрирующий фильтр низкой частоты. Все высокие частоты отфильтровываются, а на выходе получается ровное постоянное напряжение. К сожалению, такая идиллия имеет место только в отсутствие нагрузки, к чему мы вернемся чуть далее, а пока попробуем определить, какова величина этого постоянного напряжения на выходе фильтра.