Читать «Занимательная электроника» онлайн - страница 111

Юрий Всеволодович Ревич

(по данным Duracell/Procter & Gamble)

Рис. 9.3. Типовые разрядные кривые щелочного элемента типоразмера АА при 20 °C и различных сопротивлениях нагрузки

(по данным Duracell/Procter & Gamble)

Некоторые типовые разрядные кривые для различных элементов и режимов показаны на рис. 9.1–9.3. Такие графики приводятся в документации, которую можно разыскать на сайтах производителей, и с их помощью уточнить энергоемкость. При необходимости подобные данные несложно получить и самостоятельно, замкнув элемент на нужное сопротивление в требуемых условиях и периодически отмечая напряжение. Для того чтобы получить из этих данных энергоемкость в миллиампер-часах (мА-ч), следует поделить среднее за время разряда значение напряжения на нагрузку в омах и умножить на время. Так, для элемента АА при разряде до 0,9 В и нагрузке 43 Ом время разряда равно 100 часам, среднее значение напряжения составит примерно 1,25 В, т. е. средний ток разряда будет около 30 мА. Итого энергоемкость при этих условиях приблизительно равна 3000 мА-ч. А вот при нагрузке 3,9 Ом (средний ток — примерно 320 мА) энергоемкость будет всего около 2200 мА-ч.

Ориентировочная удельная энергоемкость щелочных элементов — примерно 300 мА-ч на см3. Таким образом, энергоемкость батареек типоразмера АА — около 2200–2500 мА-ч, типоразмера ААА — 1000–1200 мА-ч, примерно столько же дают пальчиковые (NiMH) аккумуляторы тех же размеров (о них далее). Для щелочного элемента типоразмера D энергоемкость составит 15–18 А-ч, для типоразмера С — вполовину меньше. Для аналогичных «обычных» батареек (их еще называют солевыми) — энергоемкость в три раза меньше, чем у щелочных. Для щелочных 9-вольтовых батареек типоразмера «Крона» энергоемкость составляет приблизительно 500–600 мА-ч, зато литиевый аналог (1604LC) имеет вдвое большую энергоемкость и, несмотря на дороговизну, может быть всячески рекомендован для устройств вроде тестеров, которые в основном хранятся без дела.

Однако эти ориентировочные цифры очень приблизительные вследствие того, что энергоемкость элемента сильно зависит от условий разряда, — так, если при разрядном токе 0,1 А считать емкость щелочного элемента за номинальную, то при разряде вдесятеро большим током (1 А) она может упасть в полтора-два, а то и в три раза (в зависимости от типа элемента), а при снижении тока до 1 мА, наоборот, возрастает на 30–50 %. Самый выгодный режим разряда для щелочных элементов — прерывистый: если батарейке периодически давать «отдохнуть», то даже при больших токах ее емкость почти не снижается. Кроме того, многое зависит от допустимого конечного напряжения. Например, если схема допускает минимальное напряжение питания 2,7 В, что при питании от трех щелочных элементов означает конечное напряжение 0,9 В на каждый элемент, то емкость окажется почти на четверть выше, чем при допустимом конечном напряжении 3,3 В (по 1,1 В на элемент). Надо также учитывать, что при снижении температуры до 0 °C энергоемкость щелочных элементов падает на величину от 25 до 50 % (а вот литиевые тот же результат показывают только при -20°).