Читать «Радио и телевидение?.. Это очень просто!» онлайн - страница 129

Евгений Давыдович Айсберг

Я не вижу смысла подробно описывать устройство и принцип работы супериконоскопа, который в наши дни больше уже не применяется. Отмечу лишь, что большая по сравнению с простым иконоскопом чувствительность определяется тем, что мишень, на которую проецируется световое изображение, покрыта сплошным слоем цезия и не имеет мозаичной структуры.

Суперортикон

Самая совершенная передающая трубка с фотоэмиттирующей мишенью — суперортикон (рис. 195). В этой трубке изображение проецируется на фотоэмиттирующий катод, которому сообщается большой отрицательный относительно расположенной за ним мишени потенциал. Мишень сделана из чрезвычайно тонкой (0,1 мм) стеклянной пластинки, способной благодаря наличию солей металлов проводить электрический ток.

Рис. 195. Конструкция суперортикона. В кружках показаны потенциалы на различных электродах.

Как ты догадываешься, эта мишень эффективно притягивает все электроны, исходящие с фотоэмиттирующего катода. Бомбардировка притягиваемыми таким образом электронами вызывает интенсивный вылет вторичных электронов, которые тут же улавливаются очень тонкой сеткой, установленной между фотокатодом и мишенью на расстоянии сотых долей миллиметра.

В результате вылета вторичных электронов на мишени создаются положительные заряды, величина которых тем больше, чем сильнее освещены соответствующие элементы фотокатода. Эти заряды проходят сквозь тонкую мишень и нейтрализуются электронами перемещающегося луча, направляемого на мишень электронной пушкой.

Самое важное заключается в том, что, достигая мишени, эти электроны не вызывают эмиссии вторичных электронов. Электрод, расположенный около мишени и имеющий небольшой потенциал, ведет себя как настоящий тормоз, замедляющий движение электронов. Поэтому они лишь легонько ударяют по мишени, что предотвращает появление вторичных электронов. Часть электронов остается на мишени и нейтрализует ее положительно заряженные элементы. Остальные возвращаются к электронной пушке, притягиваемые большими положительными потенциалами ее анодов.

Электронный умножитель

Подумав, ты легко придешь к заключению, что интенсивность возвращающегося электронного луча обратно пропорциональна яркости соответствующих элементов изображения. Ведь мы уже отметили, что чем ярче элемент, тем больше положительный заряд соответствующей ему точки на мишени; поэтому он больше поглощает электронов из приходящего луча и, следовательно, меньше их остается в возвращающемся луче.

А что делается с этими электронами, которые достигают анода пушки? Здесь происходит необычный процесс усиления, выполняемый электронным умножителем (рис. 196).

Рис. 196. Электронный умножитель, содержащий пять анодов с последовательно возрастающими потенциалами.

Что это такое? Это устройство, основанное на использовании явления вторичной эмиссии. Целая цепочка электродов, обладающих все возрастающим положительным потенциалом, последовательно притягивает электроны. Вылетевший с первого электрода электрон попадает на второй и выбивает, скажем, пять новых электронов. Бомбардируя третий электрод, каждый из этих электронов выбивает по пять других, в результате чего их общее количество вырастает до 25, и т. д.