Читать «Шаг за шагом. Усилители и радиоузлы» онлайн - страница 30

Рудольф Анатольевич Сворень

Чем же замечательны звуки с интервалом в октаву? Почему слух по-особому ощущает двойную частоту, по-особому реагирует на сочетание звуков, если их частоты отличаются именно «в два раза»?

В поисках ответа мы опять обратимся к роялю. Очень осторожно, так, чтобы не извлечь звука, нажмите клавишу «ля2» (f2 = 880 гц), а затем ударьте по клавише «ля1» (f1 = 440 гц) и сразу же ее отпустите. Когда звук «ля1» затихнет, вы еще довольно долго будете слышать более высокий тон «ля2». Тот же эффект можно получить с двумя любыми клавишами, которым соответствует частотный интервал в одну, две, три и так далее октавы. Чем объяснить этот эффект? Резонансом? Но почему струна с частотой собственных колебаний 880 гц резонирует на частоте 440 гц? Как увязать такой незаконный резонанс с тем, что мы знаем о колебаниях струны?

Рассматривая процесс колебаний струны, мы значительно упростили его. Струна колеблется не только целиком, но еще и отдельными своими частями — половинками, третями, четвертушками и т. д. (рис. 10).

Рис. 10. Струна колеблется не только целиком, но и отдельными своими частями; поэтому ее звук содержит большое число гармоник (обертонов).

Поэтому реальная струна создает звук сложной формы, спектр которого содержит синусоидальные составляющие с кратными частотами: двойной, тройной, четырехкратной и т. д. Пример: струна «ля1», кроме основного звука, с частотой 440 гц, создает призвуки, как говорят музыканты, — обертоны: первый обертон 880 гц, второй — 1320 гц, третий — 1760 гц и т. д.

В физике и технике обертоны называют гармоническими составляющими или, сокращенно, гармониками. Этим названием будем в дальнейшем пользоваться и мы. Учтите, что обертоны и гармоники нумеруются по-разному. Синусоидальный тон основной частоты (в нашем примере 440 гц) называют первой гармоникой, тон двойной частоты (880 гц), который у музыкантов числится первым обертоном, называется второй гармоникой, второй обертон (1320 гц) — третьей гармоникой и т. д. Проще говоря, в нумерацию обертонов не входит основной тон, а в нумерацию гармоник он входит. Чтобы подсчитать частоту той или иной гармоники, достаточно умножить частоту основного тона на ее порядковый номер. Легко подсчитать, что для нашего примера частота восьмой гармоники равна 3520 гц (440·8), десятой — 4400 гц (440·10) и т. д.

Теперь уже ясно, что резонанс, который мы наблюдали в своем последнем опыте, — явление вполне законное. Просто струну «ля2» (f2 = 880 гц) привела в движение вторая гармоника колебаний струны «ля1» (2f1 = 880 гц). Подобные явления могут сблизить звучание двух (или нескольких) тонов разной высоты. Причем главную роль в этом сближении играет ухо: оно само чуть-чуть искажает форму звукового сигнала, само создает и сравнивает гармоники какого-либо созвучия, то есть двух или нескольких звуков. При этом особое предпочтение отдается тем созвучиям, гармоники которых совпадают по частоте. Совершенно ясно, что первое место среди таких привилегированных созвучий занимают чистая прима (табл. 5) и октава — здесь гармоники согласованы наилучшим образом (рис. 10). Вот почему наш слух так хорошо выделяет интервал, соответствующий октаве, вот почему этот благозвучный интервал стал основой музыкальной шкалы.