Читать «Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия» онлайн - страница 29

Алексей Александрович Москалев

Таблица 2. Омиксные исследования человека

1 Присоединение метильной группы к цитозину в составе CpG-динуклеотида молекулы ДНК без изменения самой нуклеотидной последовательности ДНК.

2 Класс ядерных белков, выполняющих две основные функции: они участвуют в упаковке нитей ДНК в ядре и в эпигенетической регуляции таких ядерных процессов, как транскрипция, репликация и репарация.

Белки, структура которых в основном совпадает со структурой гистона, но свойства несколько изменены из-за различий в аминокислотной последовательности.

4 Закономерная регулярность, образец, рисунок.

5 Малые молекулы РНК, не кодирующие белок, принимающие участие в транскрипционной и посттранскрипционной регуляции активности генов путем РНК-интерференции.

1 Матричная РНК, содержащая информацию о первичной структуре (аминокислотной последовательности) белков.

Геномика

Наиболее развит и доступен каждому уже сейчас геномный подход. Строго говоря, исследования генома не дают нам биомаркеров старения. В геноме лишь кроется ключ к наследственным задаткам, которые достались нам от родителей и свидетельствуют, например, о потенциальном риске синдромов ускоренного старения (наследственных болезнях, при которых в 30 лет люди становятся глубокими старцами) или предрасположенности к тому или иному возрастзависимому заболеванию (раку, сахарному диабету 2-го типа, нейродегенерации). Учет таких рисков и коррекция в соответствии с ними образа жизни и частоты профилактических обследований – залог здорового долголетия. В ряде случаев, когда речь идет о накопленных с возрастом соматических мутациях, анализ генома какой-либо ткани (например, клеток крови или кожи) может помочь спрогнозировать риск развития патологии, например опухоли, или оценить общий темп старения.

В основе определения генетической предрасположенности лежит несколько видов анализа.

Во-первых, это исследование снипов – вариаций последовательности ДНК, когда один из нуклеотидов в геноме одного индивидуума отличается от другого. Анализ предрасположенности по снипам стал возможен благодаря масштабным исследованиям ассоциации между заболеваемостью и последовательностью генома у большого количества людей по всему миру.

Полногеномные ассоциативные исследования (GWAS) привели к обнаружению многих снипов, тесно связанных с хроническими заболеваниями, являющимися основными причинами смерти человека (ишемическая болезнь сердца, рак, сахарный диабет 2-го типа) (рис. 14). В настоящее время одновременный анализ сотен тысяч снипов позволяет оценивать риск развития около трех сотен хронических (разные формы рака, сердечно-сосудистые, нейродегенеративные заболевания, сахарный диабет 2-го типа) и наследственных (включая синдромы ускоренного старения Вернера и Хатчинсона – Гилфорда) заболеваний.

Рис. 14. Результаты 1675 GWAS исследований позволили выявить 5303 снипов социально значимых заболеваний (по Hnisz et al., Cell 2013).