Читать «В погоне за красотой» онлайн - страница 16
Вольдемар Петрович Смилга
Например:
Если строго придерживаться терминологии, введенной чуть ранее, надо было бы сказать так:
И далее в том же духе. Как хорошее упражнение рекомендую на основе этой аксиомы доказать теорему: «Две прямые имеют лишь одну общую точку».
Всего в евклидовой геометрии сейчас различают пять групп аксиом. Это:
1) аксиомы соединения;
2) аксиомы порядка;
3) аксиомы движения;
4) аксиома непрерывности;
5) аксиома о параллельных.
Вряд ли стоит сейчас перечислять все эти аксиомы, мы поместим их в приложении, памятуя слова Геродота, что ничто не придает книге такой вес и солидность, как приложения.
К аксиомам мы еще не раз вернемся, а пока укажем…
Этап № 3. Перечисление Основных Определений.
При помощи Основных Понятий мы строим более сложные. Например:
Если внимательно прочитать эту фразу, станет ясно, что в определении угла использовано одно сложное понятие, а именно: «луч» — полупрямая.
Очевидно, мы должны были раньше дать определение этого понятия при помощи Основных. Это довольно легко можно сделать. Читатели могут проверить, насколько они прониклись духом дедукции, и, вооружившись списком аксиом, попытаться решить эту задачу.
Если бы оказалось, что, используя Основные Понятия, невозможно определить, что такое луч, тогда пришлось бы это понятие отнести к Основным.
В общем все остальные понятия и определения вводятся при помощи Основных, а также (внимание!) тех аксиом, которые установлены нами для Основных Понятий.
Нам остался последний…
Этап № 4. Формулировка теорем. Доказательство теорем.
Для наших понятий (Основных и неосновных) мы высказываем утверждения-теоремы, которые и доказываем.
Это, собственно, и есть предмет геометрии.
Я сейчас еще раз хотел бы повторить, что в такой постановке геометрия превращается в совершенно абстрактную игру наподобие шашек либо, еще лучше, шахмат.
Там также есть Основные Понятия — фигуры. Есть аксиомы — совокупность правил игры. И наконец, есть теоремы. Собственно, одна теорема: как поставить противнику мат.
Для решения этой «теоремы» игрок в ходе партии доказывает десятки лемм (вспомогательных теорем), выбирая всякий раз лучший, по его мнению, ход в данной позиции.
Впрочем, отличие игр от геометрии есть. Оно состоит в том, что очень часто партнерами принимаются неправильные «доказательства». В шахматах, скажем, не сформулированы (неизвестны) строгие логические критерии оценки каждого хода или позиции. В геометрии они есть. В ней всегда можно установить, что вновь сформулированная теорема противоречит предыдущим теоремам, а значит, противоречит и более ранним, а значит… Разматывая клубок до конца, мы приходим к двум возможностям. Или мы допустили ошибку в нашем рассуждении, или теорема, которую мы вновь сформулировали, ошибочна.