Читать «Истина в пределе. Анализ бесконечно малых» онлайн - страница 4

Антонио Дуран

Производная функции f в точке а показывает, как изменится функция в этой точке по сравнению с тем, как изменяется значение переменной. Рассмотрим две функции из прошлых примеров: s(t) = √t и v(t) = t2. При t = 1 обе эти функции принимают значение 1: s(l) = 1 и v(1) = 1. Однако из таблицы значений видно, что поведение функций вблизи t = 1 существенно различается:

t — s(t)v(t)

0,8 — 0,8944… — 0,64

0,9 — 0,9486… — 0,81

1 — 1 — 1

1,1 — 1,0488… — 1,21

1,2 — 1,0954… — 1,44

Заметьте, что функция v вблизи 1 изменяется более резко, чем функция s.

Чтобы измерить эти изменения, то есть чтобы определить производную, выберем произвольное число а и близкое к нему число a + h. Рассмотрим, как изменяется значение функции в этих точках по сравнению с изменением значения переменной. Для этого разделим разность значений функции f(a + h) — f(а) на разность значений переменных, а + h — a = h. Искомая дробь будет иметь вид:

(f(a+h) — f(a))/h

Продолжим рассматривать функции s(t) = √t и v(t) = t2. Вычислим значения этой дроби для а = 1:

Наибольшее значение этой дроби для функции v приближается к 2, для функции s оно примерно равно 0,5. Это указывает на все тот же факт, который можно видеть из предыдущей таблицы: функция v вблизи точки 1 изменяется быстрее, чем функция s. Нас особенно интересует значение дроби

(f(a+h)-f(a))/ h

при h = 0, то есть когда числа а + h и а совпадают. Это значение мы назовем производной функции f в точке а. Будем обозначать его f’(а). Это обозначение ввел французский математик Жозеф Луи Лагранж (1736—1813) (см. главу 6). Как можно видеть, значение этой дроби равно 0/0, то есть оно не определено.

Однако это лишь кажущаяся неопределенность, поскольку, как показано в предыдущей таблице, для наших функций s(t) = √t и v(t) = t2 при малых значениях h, отличных от нуля, обе дроби

(s(l+h)-s(l))/h и (v(1+h) –v(1))/h

определены и равны соответственно 0,5 для функции s(t) = √t и 2 — для функции v(t) = t2. Далее мы покажем, что эти значения действительно соответствуют значениям производных обеих функций в точке 1, то есть s’(l) = 0,5 и v’(l) = 2.

Деление ноля на ноль, возникающее при определении производной, представляло трудность для ученых XVII века и их предшественников всякий раз, когда они пытались рассчитать, например, угол наклона касательной к кривой или мгновенную скорость движения тела, зная пройденный им путь.

Бесконечность, основа анализа бесконечно малых, скрывается именно в этой операции деления ноля на ноль. Как мы только что сказали, нас интересует значение дроби

(f(a+h)-f(a))/ h

при h = 0, когда и числитель, и знаменатель обращаются в ноль. Подобные величины, равные нулю, отношение которых необходимо найти, математики XVII века назвали бесконечно малыми.

Анализ бесконечно малых, созданный Ньютоном и Лейбницем и усовершенствованный Леонардом Эйлером (1707—1783) и другими математиками XVIII века, можно назвать искусством манипулирования бесконечно малыми величинами. Как рассказывается в следующих главах, парадоксально, но ни один из этих гениальных математиков не определил сколько-нибудь точно понятие бесконечно малой величины, которое легло в основу математического анализа.